Oracle8 i

Application Developer’s Guide - Fundamentals

Release 2 (8.1.6)

December 1999
Part No. A76939-01

ORrRACLE

Application Developer’s Guide - Fundamentals, Release 2 (8.1.6)
Part No. A76939-01

Copyright © 1996, 1999, Oracle Corporation. All rights reserved.
Primary Author: John Russell

Contributing Authors: M. Bauer, M. Cyran, J. Gibb, G. Gonzalez, V. Krishnamurthy, M. Krishnaprasad,
J. Melnick, R. Moran, D. Raphaely, R. Smith, R. Urbano

Contributors: D. Alpern, A. Amor, G. Arora, V.Arora, J. Basu, R. Baylis, E. Beldin, S. Chandrasekar, T.
Chang, A. Chaudry, W. Creekbaum, D. Das, M. Davidson, G. Doherty, J. Draaijer, B. Goyal, M. Hartstein,
J. Haydu, K. Jacobs, M. Jaganath, N. Jain, H. Jakobsson, A. Jasuja, R. Jenkins Jr., R. Kasamsetty, J. Klein, R.
Kooi, S. Krishnamurthy, R. Krishnan, S. Krishnaswamy, P. Lane, N. Le, C. Lei, L. Leverenz, J. Loaiza, D.
Lorentz, W. Maimone, D. McMahon, A. Mendelsohn, M. Moore, R. Murthy, K. Muthiah, K.
Muthukkaruppan, R. Narayaran, T. Nhu Bui, V. Nimani, T. Portfolio, M. Pratt, S. Puranik, T. Pystynen,
M. Ramacher, S. Samu, U. Sangam, A. Sethi, P. Shah, N. Shariatpanahy, T. Smith, J. Srinivasan, S.
Subramanian, U. Sundaram, D. Surber, S. Suri, N. Tang, J. Tsai, A. Tsukerman, S. Urman, P. Vasterd, G.
Viswana, W. Wang, D. Wong, B. Wright, R. Yaseen

Graphic Designer: V. Moore

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registerd trademark, and Pro*Ada, Pro*COBOL, Pro*FORTRAN, SQL*Loader, SQL*Net,
SQL*Plus, Designer/2000, Developer/2000, Net8, Oracle Call Interface, Oracle?7, Oracle8, Oracle8i,
Oracle Forms, Oracle Parallel Server, PL/SQL, Pro*C, Pro*C/C++ and Trusted Oracle are trademarks or
registered trademarks of Oracle Corporation. All other company or product names mentioned are used
for identification purposes only and may be trademarks of their respective owners.

Contents

Send US YOUIr COMMENTS ...ttt
PIEIACE ...
Part| Introduction To Working With The Server

1 Understanding the Oracle Programmatic Environments

OVEIVIEW OF PLISQL ..ottt sttt et e ae et e s te et e ste et e eneenbeenrenbeenes
HOW D0ES PLZSQL WOIK?.....o ittt sttt sttt naete e snesnennenes
YN Yz Lo 7 Vo =T |l o I 4T L S
OVEIVIEW OF OC ...ttt ae e s te e te s be e teste e beste e beeneenbeeneenreenes
AAVANTAGES OF OC ...ttt b et b et bbbt n e e
PartS OF TNE OCH ..o bbbttt
Procedural and Non-Procedural EIEMENTS ...
Building an OCIT APPHICALIONouiiiiiiiiie e
Overview of Oracle ODBJects fOr OLE ...
The OO40 AULOMALION SEIVELocuviieciece ettt be e s re et s be e sae e e sresraesresraens
OO40 ODBJECE MOAEL ...ttt
Support for Oracle LOB and Object DatatyPesSccccveviiiieieiiieiesiesesie e eeese s e e snens
The Oracle Data CONIOl...........c.ooiiiiiiccce et s sre e re e e sresreens
The Oracle Objects for OLE C++ Class Library ...
Additional Sources of INFOrmMatioNccocooiiiiiiiiiii e
OVEIVIEW OF PrO*C/CHt ..ottt ettt ettt e st e e be et e sae e tesneesteaneas
How You Implement a Pro*C/C++ APPHCAtIONc.ccceriiriiiiiieinieesesee e

1-2

Part I

2

Highlights of Pro*C/ZC++ FEALUIESccveiiieee ettt 1-21

New Oracle8i FEatures SUPPOITEAcoociriiiiiiiiiee e 1-22
OVEIVIEW OF PrO*COBOL ..ottt s 1-23
How You Implement a Pro*COBOL APPlICatioNcccoiiiiiiiiiereeenceeeeeee e 1-23
Highlights Of Pro*COBOL FEATUIESc.eoiiiiiieiiieisieee ettt 1-24
New Oracle8i Features SUPPOITEAccooeieieeeces e ene s 1-25
OVErvIEW OF Oracle JIDBCoci ittt bbbttt 1-26
JDBC THIN DIFIVE ...ttt ettt sttt b et e ae st et es e seeneeneetesaesnens 1-26
IDBEC OCI DIV ...ttt ettt bbbt ettt neenes 1-26
THE JDBC SEIVEE DFIVE ...ttt bbb e bbbt 1-27
EXEENSIONS OF IDBC ..ottt bbb sttt st e et ne et e e nesne st neas 1-27
Sample Program for the JDBC Thin DFIVELcc.coeieiciciciece et 1-27
JAVA TN ThE RDBIMIS.......oo bbb ettt b et st 1-29
Why USE StOred PrOCEAUIES?.......oiiiiiieiiieirieiste ettt 1-29
JDBC in SQLJ APPHICALIONSoocieiiicieie ettt e e 1-30
Overview 0f Oracle SQLI ..o e te e e re e e nre s 1-30
K310] I 1o o 1 OO SOPTSESTUUSSPRORSTIN 1-30
SQLJI DESIGN GOAIS.....c.eeieeieiecietisese sttt ettt sttt et e e n e e neerennn 1-31
Strengths of Oracle’s SQLJ IMplementation ... 1-32
Comparison of SQLIWIth JIDBCcccciiiiiiiiiiie e 1-32
SQLJ EXampPle fOr ODJECT TYPES...uiviiiirieiire e riesiee et st n e e enenns 1-33
SQLJ Stored Procedures iNthe SEIVEN ...t 1-36
Choosing a Programming ENVIFONMENT........c.cccoiiiiiiniire e 1-37
Use OCI OF @ PreCOMPIIEI?oveeieee s ene e 1-37
Built-in Packages and LIDFaries ..ottt 1-38
JAVA VS, PLZSQL ..ottt ettt ettt n et neebenaeane s 1-39

Designing the Database

Managing Schema Objects

MaNaGING TaABIES ... 2-2
(D1 ES] o LT I L] [T 2-3
Creating TaBIESocviie et e et e st e s be et e e beene e reene e reenes 2-4
ABTEIING TADIES .ot bbbttt 2-9
(D] f0] o] o] [T N IF- 1 o] =TSSP 2-10

Managing TeEMPOrary TaABDIES ..o 2-11

Creating TemMPOrary TabIes ... e 2-12
UsiNg TeMPOrary TaBIES ..o e re s 2-12
Examples: Using Temporary TabIeS ..o 2-13
MANAGING VIBWS ...ttt bbb bbbt b ettt b e 2-15
L1 =T L[To I A T=1VY SRS 2-15
REPIACING VIBWS ...ttt bbb bbb ettt b et ebe et e 2-17
USING VIBWS ..ottt b bbbttt bttt 2-18
[T 0] o] o] [1o IV A TC1Y SO P 2-20
AV [T 11 VAT aTo I Lo] 1 g I V4 L1V AP 2-21
Key-Preserved TabIes ... 2-22
Rule for DML Statements 0N JOIN VIBWS ..ottt 2-23
Using the UPDATABLE_COLUMNS VIBWS.......ccociiiiiiiinieiseesesise s sseneseens 2-26
L@ 101 (=T o] [1SR OSSTRSOPRURPRTRRN 2-26
Y Eo Vg Vo T o JRST=To (U 1= ol =S 2-29
CreatiNg SEOUENCESoiuiitiiiiitiiteite sttt ettt ettt ettt b ettt sbesb e b e sb e st et e b et e e eseese e bt ebeebesbearens 2-29
ABTENTNG SEQUENCES ...ttt bbbt b ekt nb bbbt bt bt bt en e b 2-30
L0 [o ST To [0 1=T o= 2-30
DropPPING SEQUENCESooueiiiiiieiieieite ittt sttt ettt b e bbb s bt e b e et e e et ebeebeabeebeneas 2-34
MaANAGING SYNONYIMS ...ttt bbbt b et b et bt bbbt e bbb nnes 2-35
Creating SYNONYIMS ...occiii i sise e stese e e s e ettt et e teste st e tesaeseente e e e enseneeseaneenenrenrenrens 2-35
L0 YT (o T3 Y 0] 01/ 0 1SS 2-35
DIrOPPING SYNONYIMS ..ottt sb et b et b et se ekt nb bbb sb b e s b st ab et ab e ebe e ane e 2-36
Creating Multiple Tables and Views in One OPerationccccoevvievenenniereieiesieeeseseanens 2-37
Naming SChEMA ODJECTSccviiiiiieieie et e s te et esreenbesreenes 2-38
Name Resolution in SQL Stat@MENTScccooeiieiiiiieieieese e 2-38
Renaming SChema ODBJECLSccocviiviiirce e renre s 2-39
ReNaming the SCREmM@a ..o e ae e 2-40
Listing Information about SChema ODjJECTS..........ccoiiiiiiriiince e 2-41

Selecting a Datatype

Oracle BUIIT-IN DATALYPEScoiueiriiiiiiiteisieiei ettt bbbttt sttt 3-2
USING Character DatatyPESccvivieiieriiieierecieieeee ettt e e enesre s e snesnesrennens 3-5
Using the NUMBER Datatyecc.coueriiiiieieieiieiiieetesiese sttt sttt sne e sne 3-7
USING the DATE Datatye.......ccueiieiiiiiieiiieiesieie ettt 3-8

vi

Establishing Year 2000 COMPIANCEccuiiiiiiiieit et 3-9

USING the LONG DatatyPecceiiiuiiierieierieieniee sttt 3-18
Using RAW and LONG RAW DatatyPeS......cccovevriviiirireiesesinseseesiesieseessesseseeseessssessessessesses 3-20
ROWIDs and the ROWID DAtatye........ccccuriiiiiririinieiienie et sne s 3-21
ANSI/ISO, DB2, and SQL/DS DAtatYPEScccereruerierieierieieaiesiesestesiesieseesiesaeseeseeseesessessessessessens 3-24
(D 7 W O70] 0 V=T] o] o H PSSR 3-25
RUIE 1: ASSIGNIMENTSecviiiiicie ettt sttt e st e st et e e st e s beeneesaeesaesreeseesneeseenraens 3-25
Rule 2: EXPression EVAIUATION ..ot 3-27

Maintaining Data Integrity

USING INTEGIity CONSIIAINTS. ..ottt 4-2
When to Enforce Business Rules with Integrity Constraintsc.ccccoceveeeieieivsinsinsinsennens 4-2
When to Enforce Business Rules in APPlICAtIONS ..o 4-3
Creating Indexes for Use With CONSIFAINTSc.ccviiiiiiiiiie s 4-3
Using NOT NULL Integrity CONSIrAINTSc.coveviviiiiiise e 4-3
Setting Default Column ValUES ... 4-4
Choosing @ Table’s Primary KEY ...t 4-6
Using UNIQUE Key Integrity CONSLIraiNtSccccooviiiiiiiieniinn e 4-7

Using Referential Integrity CONSraINTScccociiiiie i 4-8
NUIIS N FOrIigN KEYS ..ottt 4-8
Relationships Between Parent and Child Tablescccoovvvviviiiiniene e 4-10
Multiple FOREIGN KEY CONSLIAINTSooiiiiiiiiiiiiesisicse e 4-11
Deferring CoNStraint ChECKS. ..ot e 4-11
Managing Constraints That Have Associated INAEXEScccovvvverirerereneicieceeeeseaeeas 4-13
Concurrency Control, Indexes, and FOreign KeYSccvivvviieeieiieeie e 4-13

Referential Integrity in a Distributed Database ... 4-14

Using CHECK Integrity CONSrAINTS........ccccoviieiiiciesecc e sne e 4-15
Restrictions 0N CHECK CONSIFAINTSc..cviiiiiiiiiscsese e 4-15
Designing CHECK CONSLFAINTScoeiiiiiiiniiisiesese e 4-16
Multiple CHECK CONSLIAINTScciiiieieieicieieeee sttt e e ne s e e snens 4-16
CHECK and NOT NULL Integrity CONSIraintscccooviieiieiieiiieie e 4-16

Defining INtegrity CONSTIAINTScoviiiiiiiiieet e 4-17
The CREATE TABLE COMMANG ...c.ooiiiiiiiieiiese et 4-17
The ALTER TABLE COMMANGccoiiiiiiiieiieieieieeeiee ettt 4-18
REQUITEA PIIVIIEOES . .oeiiiieiie bbb 4-18

Naming INtegrity CONSLIAINTScccciiiiiiciece e 4-18

Why Disable CONSEIAINTS?ccciiiiirieiiiciieisie ettt ene e 4-19
Integrity Constraint ViolatioNsccccvviiiiiiiiiisceeeece e nne 4-20
ON DEFINILION ..t b bbb bbbt e bt e b e b ebe st sbesre s 4-20
Enabling and Disabling Existing Integrity CONSIraintsccoccoviiiiniincineicsecnns 4-21
Enabling and Disabling Key Integrity CONSIraints............ccocvvivreriereieneneieneeeeese e 4-22
EXCEPLION REPOITING ...ttt bbb bbb bbbttt ebe b e 4-22
Altering INtegrity CONSTIAINTSc.coiiiiiieee bbb 4-23
Examples of MODIFY CONSTRAINTooiiicecrce sttt 4-23
Dropping INtegrity CONSIFAINTSccoiiiiiiiieieee e 4-24
Managing FOREIGN KEY Integrity CONSTraiNtSccoocoieiineiineiiesecseee e 4-25
Defining FOREIGN KEY Integrity CONSraintscccovviviviiivienienese e sese s e 4-25
Enabling FOREIGN KEY Integrity CONSLraintscccooeviiieiiniieii e 4-27
Listing Integrity Constraint DefinitioNS ... 4-27
e 10 0] 0] TS 4-27

Selecting an Index Strategy

Y EoTa T Vo [o [1T [=0t ST 5-1
CreatiNg INOEXES ...cviieece ettt s et e s e et e et e et e enb e beeneesneeaesreentenres 5-5
DIrOPPING INAEXES ...tttk bbbt bbbt bbb 5-5

FUNCLION-BASEA INUEXES......ccuiiiiiieiiiereere ettt sttt nnens 5-6
Using FUNCLION-BASEA INAEXESocvveeiieeiie ettt re e ste e steeaenreens 5-7
Example FUNCLION-BaSed INAEXEScciiiiiiiiiiiiieicscri e 5-11
Requirements and Restrictions for Function-Based INAEXES.........ccccocvvererieveneinsincnsnniens 5-12

Managing Clusters, Clustered Tables, and Cluster INeXes........c..cccocevvvieiinieveeie e, 5-14
Guidelines for Creating CIUSTELS ..o e 5-14
Performance CONSIAEIALIONSccoviiiiiriiiieie et 5-15
Creating Clusters, Clustered Tables, and Cluster INAeXES.........ccccoevivivieiiviieieeie s 5-15
Manually Allocating Storage for a CIUSTEr ... 5-17
Dropping Clusters, Clustered Tables, and Cluster INAeXesccccvvvvverererciveieiesinennens 5-17

Managing Hash Clusters and Clustered Tables ..o 5-19
Creating Hash Clusters and Clustered Tables ... 5-19
Controlling Space Usage Within a Hash CIUSter..........cc.ccccviviiiiiiinene e 5-20
Dropping Hash CIUSTEISc.ooiiiiiiiieie et 5-20
When to USe HASNING ..o 5-20

Vii

viii

Speeding Up Index Access with Index-Organized Tables

Overview of Index-Organized TabIes..........ccoiiiiiiiiiii e 6-2
Index-Organized Tables versus Ordinary TableSccccccvviviiviiniiiieniserereee e 6-2
Advantages of Index-Organized Tables.........c.ccvoiiiiii i e 6-2

Features of INdex-Organized TabIS.........ccooiiiiiiiie e 6-4

When to Use Index-Organized Tables ... 6-7

=10 4 0] [T U SOT TSR PRV 6-9

Processing SQL Statements

SQL StateMeENt EXECUTIONc..oiiiiiiiciiciee ettt sttt s et e esne e e e aaeentesneesreanees 7-2
Identifying Extensions to SQL92 (FIPS FIagQing)ccccverieriiniineiniecniesesese e 7-2
Controlling TraNSACLIONSccvciiiieiee ettt e e e e e eseeresnearesresrennens 7-4
IMProviNg PerfOIMANCE..........ccoiiiiiiiiriee ettt sbe e sne 7-4
COMMILEING @ TIANSACTIONcviiiiiiieiiiteiit ettt b bbbttt e 7-5
R0l LT alo 27 Tod 1 W I =1 = T« o o 7-6
Defining a Transaction SAVEPOINTccooiiiiiiieieeee et 7-6
Privileges Required for Transaction Managementcccoveriiiiineieneencesee e 7-7
Ensuring Repeatable Reads with Read-Only Transactionscc.ccocvevevereieiecncinsie s 7-8
(0] [[o T OA U [£] =SSOSR 7-9
Declaring and OPening CUISOISccoeiiieriiierieierieiesieie ettt sbe sttt 7-9
Using a Cursor to Re-EXeCUte STatEMENTS........c.covviviiiiri e 7-9
(0 [0 1S] [o T @ 0T Y0 -SSP 7-10
CANCEIING CUISOIS ..ottt et ettt b bbbt b et eb e b e b e b 7-10
EXPHCIt Data LOCKING ..cvoiceicice ettt e ene e 7-11
Choosing @ LOCKING STFAtEQYcccveiveiieeieiieieste ettt e esre e sre e 7-12
Letting Oracle Control Table LOCKING ... 7-16
Summary of Non-Default LocKing OPtiONScccoveiieieieiircece e 7-17
Explicitly AcqQUIring ROW LOCKScooiiiiiiiiici s 7-18
L0 1T o To] TSRS 7-20
Creating USEE LOCKSccvcieiiecisise sttt sttt sttt st a e en e e e eneenenns 7-20
SAMPIE USEE LOCKS. ...ttt bbb bbb bbbttt be e 7-20
Viewing and MoONItOriNg LOCKScooiiiiiiiiiiic s 7-21
Concurrency Control Using Serializable Transactionscccocvovvivviveneneienecees e 7-22
Serializable Transaction INTEFraCHIONcocoiiiiiiieiec s 7-25
Setting the 1SOlation LEVED ... 7-25

Referential Integrity and Serializable Transactions.........ccccccoceviveiiccnc e, 7-26

READ COMMITTED and SERIALIZABLE 1S0lation............ccccovriiiiniiiniineisesseesessens 7-28
FAN o] o] 1Toz= Lo o [1T o 1SS 7-31
AULONOMOUS TFANSACTIONS. ...ttt ettt bbb e b b e st e e e st et e e b ebe e e 7-32
EXAIMPIES ...t b bbbttt 7-35
Defining AUutoNOMOUS TraNSACLIONS.......cccieierieieieece e ere e 7-40

Dynamic SQL

What 1S DYNAMIC SQL?......oiiiiiiie ettt sttt e es e eseeneaneeressesresreneennens 8-2
When to Use DYNAMIC SQLoooiiiiicices sttt et be e na e ae e e anes 8-3
To Execute Dynamic DML STAteMENTS.ccociieiriiiieiieiesie ettt 8-3
To Execute Statements Not Supported by Static SQL in PL/SQLccccevvevvevvevviviiececne 8-3
To Execute DYNAMIC QUEKIES........ccieiiieeiecieste st sttt e sttt esreete e e ntesneesreanes 8-4
To Reference Database Objects that Do Not Exist at Compilation............c.ccccoeevviiiciienns 8-5
To Optimize Execution DYNamMICAIlYccccoviiviiiiiiiinire e 8-6
To Invoke Dynamic PL/ZSQL BIOCKS.......cc.ciiiiiiic ittt st 8-7
To Perform Dynamic Operations Using INVOKer-RightS ... 8-8
A Dynamic SQL Scenario Using Native Dynamic SQLc.ccocvivviviieienicreeieee e 8-9
DAL MOAEL ... bbb bbb bbbttt ettt b r e e 8-9
SAMPIE DML OPEIALION........ciitiiiitiictiietireeit ettt 8-10
R a gl o] [l BT @ o 1T -1 d o o [P S PSSR 8-10
Sample Dynamic Single-ROW QUETYcc.ciiiiiiiiiiiiiire e 8-11
Sample Dynamic MUultiple-ROW QUETYcciiiiiiiiiieee e 8-12
Native Dynamic SQL vs. the DBMS_SQL Package.........ccccvivviviirineneiirceeeeeeee s 8-12
Advantages of Native Dynamic SQL.........cccviiiiiiiiic e 8-13
Advantages of the DBMS_SQL PaCKAJEccuvueiiiiiiiie ittt 8-17
Examples of DBMS_SQL Package Code and Native Dynamic SQL Code.c..c.cuene.e. 8-19
Application Development Languages Other Than PL/SQL........cccoiiiiiiiiiiiniecece 8-24

Using Procedures and Packages

PL/SQL Program UNIESccoiiciiiiciccsese sttt ettt e bt e sae et e sneenneanaeseeanes 9-2
ANONYMOUS BIOCKS ...ttt bbbttt 9-2
Stored Program Units (Procedures, Functions, and Packages)cccccevevvernivnivsinsinsnnnnens 9-5

WIapPing PL/SQL COOEc.oiuiiiiieiieiteie ettt bbb e ettt be b b 9-28

REMOLE DEPENUENCIES ..ottt bbbttt ne et sr et nb et e bbbt b e b 9-28

10

L0 1=T1 =T 0] oL TSP OOUSOPRUR PSP 9-28

STONMBLUTES ..ttt bt bbbt b et b e ekt b ekt se et eb e bt e bbb e b et e bt e b e en e b 9-30
Controlling Remote DEPENTENCIEScceieierieriirieierieeeee e re e 9-35
CUISOE VATTADIES ...t bbb bbb ettt b et b bt 9-38
Declaring and Opening Cursor Variables ... 9-38
Examples Of CUISOr Variables.........c.ccoiviieieierceses st sne s 9-38
COMPIIE-TIME EFTOIS ...ttt bbb bbb ettt et et e e bt et e b e 9-41
RUN-TIMe Error HaNAIiNGcoooiiii e 9-43
Declaring Exceptions and Exception Handling ROULINESccccovvvvvevencicriceceeie e 9-44
Unhandled EXCEPLIONScc.oiiiiiie e ettt 9-45
Handling Errors in Distributed QUETIEScoeiiiiiiiiiieeee e 9-46
Handling Errors in ReMOte PrOCEAUIEScoveveieiiicicise st anens 9-46
Debugging StOred ProCEAUIES..........coviii ettt e sre e sre s 9-47
Calling STOred ProCROUIES.........ooiiieieeee ettt 9-49
Calling ReMOLE PrOCEAUIESccviiiiiie ettt st e e s e e neerenne e 9-53
Synonyms for Procedures and Packagesccviviiiiiiiieiie st 9-56
Calling Stored Functions from SQL EXPreSSIONScccuveiiieiinierineninenisessie s 9-56
USING PLZSQL FUNCLIONS ..oviiiiice ettt enenns 9-56
)Y - PSPPI 9-57
NaMING CONVENTIONS ..ottt bbbttt bbb 9-57
Meeting BasiC REQUITEIMENTSc.ciiieieieeieeieeee sttt s se e e e e naenenresnesnens 9-60
Controlling Side EFfECLS ..o 9-61
OVEITOAAING ...ttt bbb bt et b bbbt bt eb et b e en e ene e 9-69
Serially Reusable PL/ZSQL PaCKAQES......ccccvieieriirieierieeereeese st se st sie e ne e enenns 9-70
External Routines
The Need to Work with Multiple LAaNQUAGES.........ccovrveieieece e 10-1
What is an EXternal ROULINE?. ...t e 10-2
The Call SPECITICATIONc.oviviiieiic bbb 10-3
Loading EXIErNal ROULINESc.ccviiiiii ittt st neenasseanennens 10-4
Loading Java Class MEtNOUS..........coiiiiiiicc et 10-4
Loading EXternal C ROULINESccciiiiiiiiiisese et 10-5
Publishing an EXternal ROULINEccocv i e sne s 10-6
The AS LANGUAGE Clause for Java Class Methods...........cccooiiiininiiiicnciceecceee 10-8
The AS LANGUAGE Clause for External C ROULINESccccoioiiiiininene e 10-8

Publishing Java Class MethOdS ... 10-9

Publishing EXternal C ROUTINES. ..ottt 10-10
Locations of Call SPeCifiCatioNScccoieviiiieic e 10-10
Passing Parameters to Java Class Methods with Call Specificationscccccoccoviiene. 10-14
Passing Parameters to External C Routines with Call Specifications.............cc.cccoeivneene. 10-14
SPECITYING DAtALYPES. ... e cveieeiieiiisiite ettt r et sr et te e e s esee e e e eneerenreens 10-16
External Datatype MapPiNgsccooeierirerie ettt ne s 10-18
BY VALUE/REFERENCE for IN and IN OUT Parameter Modes..........cccooevereiveiennnne. 10-19
The PARAMETERS ClAUSEc.oouiiiiieiiees e 10-20
Overriding Default Datatype Mapping........ccoeeiiiininininene e 10-21
SPECITYING PrOPEITIEScviiiiiitiisteet ettt 10-21
Executing External Routines: the CALL Statement..........cccocoovviiiiiv i 10-29
PreliMINAIIES ..ottt b b bbbttt et ebe e 10-30
CALL StatemMeNnt SYNTAX........coiiiiiiiiieie e e 10-32
Calling Java Class MEthOdS.ccviviieiicccece e 10-33
Calling EXternal C ROULINESooviiieiiciec ettt sttt 10-33
Errors and EXCEPTIONS.cviiiiiiiteieteree ettt 10-34
Generic Compile Time Call specification Errors........cccoovvvvienienevenese e 10-34
Java EXCeption HanAliNg ..o 10-35
C EXCePtioN HaNAIING ..ot 10-35
Using Service Routines with External C ROULINES..........cccooviviiniiin s 10-35
Doing Callbacks with External C ROULINEScccccciiiiiiiiecc e 10-43
Object SUPPOrt FOr OCI CallDACKS ..ot s 10-45
ReStrictions 0N CallDACKS.........cociiiiiiiiiee bbb 10-46
Debugging EXternal ROULINES...........cccoiieieiiei et 10-47
DEIMO PrOGIaM ... e ane s 10-48
Guidelines for EXternal C ROULINEScoci it 10-48
Restrictions on EXternal C ROUTINEScccooiiiiiiiiiiinee s 10-50

11 Establishing Security Policies

INtroduction t0 SECUNILY POLICIESccociiiiice e 11-2
Security Threats and COUNTEIMEASUIESccoueiriiririeiiieieesiees et 11-2
What Discretionary Security Policies Can COVEN..........cccovivivrienienenie e ees 11-3
Features to Use in Establishing Security POLICIES..........ccccceiiiieiicicccc e 11-4

APPHICATION SECUNTTY ..ottt b ettt 11-5

Xi

Considerations for Using Application-Based SECUIItY...........cccccooviinerenenenenece e 11-6

Tasks of Application AdMINISIFATOrS ...t s 11-8
Overview of Roles and Application Privilege Management..........ccccocvcvvevevcicieieccnennn, 11-8
Associating Privileges with the User’s Current Application Role ... 11-9
Restricting Application Roles from TOOI USEIS ... 11-12
Protecting Database Objects Through Use of Schemas............cccccvcvvivviiiievcneccccce, 11-19
Managing ODJECt PrIVIIEQESc.ocviiiei et e 11-21
Creating a Role and Protecting 1S USE ..o 11-23
Enabling and Disabling ROIESccccv i e 11-24
Granting and Revoking System Privileges and ROIES...........cccocevviieevie e 11-28
Granting and Revoking Schema Object Privileges and RoIes............ccoccoveiiiiicnicnne. 11-30
Granting to, and Revoking from, the User Group PUBLICcccccooviniinieicnciciennennas 11-34
Fine-Grained ACCESS CONIOL. ...t 11-35
Features of Fine-Grained AcCeSS CONTIOL........ccooiiiieiieiiieeee e 11-36
How to Add a Policy t0 a Table OF VIEWcceveicieice e 11-38
Example of a Dynamically Modified Statement ..o 11-39
APPHCATION CONTEXL......eiviiitiiietiieett ettt ettt et b et sb et b et b et eb et eb e e ebenn b nna 11-40
Features of Application CONEXL.........ccovviiiiiiiin e 11-41
Feature Design Principles for Application CONeXt...........cccooiiiininiininie i 11-45
Ways to Use Application Context with Fine Grained Access Controlccccceveenee. 11-47
o [0)V1YA (oM B T-0AV o] o] [Tor=1 dTo] o [@Fo]] 1= 4 APPSR 11-49
EXAIMPIES ...ttt bbbt bbb bbbt b e ne e 11-53
Authentication Through a Middle TIEr ... 11-64
Advantages of n-Tier AUthenticationccccoeiecccc e 11-64
Security Challenges of Three-tier COMPULING.........coooiiiiiiiiiine e 11-65
Oracle8i n-Tier Authentication SOIULIONS...........oooiiiiei e 11-69
(D 2= - T = 100 Y 1 4 T o TSRS 11-72
The DBMS_OBFUSCATION_TOOLKIT Packagecccceivveiriiiiiieise s 11-72
Development CONSIAEIATIONSccoiviiiiiiriiiricee e 11-73

Part Il The Active Database

12 Using Triggers

DESIGNING TIIGOEIS. c. vttt ettt bbb bbbt b bbbttt nb et nn s 12-2
(1T 4 o I o o =T SRS 12-3

Xii

13

14

Prerequisites for Creating TrIQOEIS ...ooooi ittt e 12-4

TYPES OF THIGGRIS ..ttt bbb bbbt b et bt b et bbb b bbb 12-4
=T T o T I T T 1= SO S 12-5
Triggering STAtEIMENTccocoiiice et e s e e e s e e naesteesresraestesraens 12-5
BEFORE and AFTER OPLIONS ...c.oiiiiiiiiiieeieie et 12-7
INSTEAD OF TrIQOEIS c.vetiietieeeeeese st ste s e steste e sae st estesaesaeseesessessestessesaessesseseensensesaeneenensessessens 12-7
FOR EACH ROW OPLION ..ottt sttt sttt ettt seeteseesennas 12-12
WWHEN CHAUSE ...ttt sttt bt et e e e eneeneanesneas 12-13
B I LT T o T=1 g =0T Y PSP 12-14
Triggers and Handling Remote EXCEPLIONSooeieieiiiiiieicncere e 12-18
Restrictions 0N Creating TrIGOEISc.ciiiiiiiiieieeteriete ettt 12-20
WHO IS The THIQQEE USEI? ...ttt st sn et naeneeneanenneas 12-26
g VAT (=T 1= PSSR 12-26
COMPIIING TIIGUETS ettt ettt bbb bbbt b et b et be e b nrene e 12-28
1= o =T a0 =] ot TSP 12-28
RECOMPIIING THIGUEIS ..ottt bbbttt ene et 12-29
MIGIALION ISSUESeviiiiiieeiete ettt bbb bbb bbb 12-29
Y/ oTo) V4 T o T 1o o =1 £SO 12-30
(D TT o180 o Vg o TN g Lo o<1 USSR 12-30
Enabling and Disabling TriggerS. ...ttt 12-31
[T T=To] T o N I g o o =T SRS 12-31
(D TEE: o] [gTo I I g [[0 (=1 USSR 12-31
Listing INformation ADOUL TIrIGOEISoiiiiiiiiesee e 12-32
Examples of Trigger APPLICAtIONS ..o ere s 12-34
Triggering EVENt PUBTICALIONccooiiiiie ettt 12-54
Publication FrameWOrK ... e 12-54
Working With System Events
Event AttriDULE FUNCLIONSoiiiiie e 13-2
LIS OF EVENTS ...t b e sb et bbbttt et 13-6
RESOUICE MaNaAgEr EVENTSoiviiiii ittt ettt bbb e e nnaeeees 13-6
CHIEBNT EVENTS ..ttt bbbt b e be st e e e et e e eseeseeneebesbenresnens 13-7
Using Publish-Subscribe

INntroduction t0 PUBIISN-SUDSCIIDEooouiii ettt 14-2

Xiii

Publish-Subscribe INFrasStruCture ... s 14-3
PUBIisSh-SUBDSCIDE CONCEPTS.....c.viuiiitiiciie bbb 14-4
L= 0] 0 1= PSP 14-6

Part IV Developing Specialized Applications

15 Developing Web Applications with PL/SQL

Performing Network Operations With PL/SQLcccccoiiiiiiieiisi s 15-1
RS1=T o 1T To TN 1Y, = 1 ST 15-1
Getting a HOSt NaME OF AAIESScovciiiiiieiiieisie ettt 15-1
Working With TCPZIP CONNECLIONS..........coiieieicieesese e s s e e ne e e e anens 15-1
Retrieving the Contents of an HTTP URL.........cccooooiiiiiiicccr e 15-2
Working with Tables, Image Maps, Cookies, CGI Variables, and More..........c.ccccccoevenene 15-2

Embedding PL/SQL Code in Web Pages (PL/SQL Server Pages).......ccccocevererereervensivsnnnnens 15-2
Choosing a Software ConfiguIation.............cccooviiiiiiie s 15-3
Writing the Code and Content for the PL/SQL Server Page ..., 15-4
Syntax of PL/SQL Server Page EIEMENTS........cccccvieieicicieie e 15-9
Loading the PL/SQL Server Page into the Database as a Stored Procedure................... 15-11
Running a PL/SQL Server Page Via @ URLcccccciiiiiiiiieieree e 15-12
Examples Of PLZSQL SEIVEr PAQESccvviviiiiiieriesiesesieseeteesese e ste ettt ssesae e sseneesessenns 15-12
Debugging PL/SQL Server Page Problems..........c.cccooviiiii i 15-18
Putting an Application using PL/SQL Server Pages into Production..............cccccceeuee. 15-19

16 Working with Transaction Monitors with Oracle XA

Xiv

X/Open Distributed Transaction Processing (DTP) ..o 16-2
Required PUblic INfOrmMation...........c.cooeeeieiec e 16-5
XA and the Two-Phase COmMmMIt ProtoCO|ccoiiiiiiiiiiicceseeesee e 16-5
Transaction Processing Monitors (TPIMS) ..o 16-6
Support for Dynamic and Static RegiStrationccccocviiiv i s 16-6
Oracle XA Library Interface SUDIOULINES...........cccoiiiiii i 16-7
XA LIDrary SUDFOULINESc.ciiiiiiiiitiittet ettt 16-7
Extensions to the XA INTErTACE ..o 16-8
Developing and Installing Applications That Use the XA Librariesccccocoviiininennne 16-9
Responsibilities of the DBA or System AdmiNistrator............cccooevveiieneeneienee e 16-9

Responsibilities of the Application DeVEIOPETcccoviiiiiiniiiiiie e 16-10

Defining the Xa_0PEN STING ..o 16-10
Interfacing to Precompilers and OCIS ..o 16-17
Transaction CONrol USING XAooi et sae e 16-20
Migrating Precompiler or OCI Applications to TPM Applications...........cccoceevreivrennen. 16-23
XA Library Thread Safety ... 16-24
Troubleshooting XA APPHCAtIONS.......cccooiiiiee s 16-26
DA I - Tot] SRR 16-26
Trace File EXAMPIES.....cco ettt sttt neerenne e 16-27
In-doubt or Pending TranSaCtiONScccocveiuiiieie et 16-27
Oracle Server SYS ACCOUNT TABIESoviiiiiieeeee e 16-28
General XA 1SSUes and RESIIICHIONS ..ot 16-29
DAtADASE LINKS ...ttt bbb ettt ene s 16-29
Oracle Parallel SErver OPTiON ...t 16-30
SQL-DASEA RESIIICHIONSveciveiic ittt ettt e et eebeesbe bt e sbeenresbeenees 16-30
MISCEIANEOUS XA ISSUES ...ttt sttt bbb st b et b e ene s 16-31
Changes to Oracle XA SUPPOITciiiiieieseie ettt er e ene e 16-32
XA Changes from Release 8.0 t0 Release 8.1cccccevevvereeiieincnse e 16-32
XA Changes from Release 7.3 t0 Rel€aSe 8.0cccceevviieiiiii i 16-33

Index

XV

XVi

Send Us Your Comments

Oracle8i Application Developer's Guide - Fundamentals, Release 2 (8.1.6)
Part No. A76939-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

« Did you find any errors?

« Isthe information clearly presented?

« Do you need more information? If so, where?

« Are the examples correct? Do you need more examples?
« What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,
section, and page number (if available). You can send comments to us in the following ways:

« E-mail - infodev@us.oracle.com

« FAX-(650) 506-7228 Attn: Oracle Server Documentation

« Postal service:
Oracle Corporation
Server Documentation Manager
500 Oracle Parkway
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, and telephone number below.

If you have problems with the software, please contact your local Oracle Support Services.

Xvii

xViii

Preface

Application Developer’s Guide - Fundamentals describes features of application
development for the Oracle Server, Release 2 (8.1.6). Information in this guide
applies to versions of the Oracle Server that run on all platforms, and does not
include system-specific information.

The Preface includes the following sections:
« Information in This Guide

« Audience

« [Feature Coverage and Availability

= Other Guides

« How This Book Is Organized

« Conventions Used in This Guide

« Your Comments Are Welcome

Xix

Information in This Guide

Audience

As an application developer, you should learn about the many Oracle Server
features that can ease application development and improve performance. This
Guide describes Oracle Server features that relate to application development. It
does not cover the PL/SQL language, nor does it directly discuss application
development on the client side. The table of contents and the "How This Book Is
Organized" section has more information about the material covered. The "Other
Guides" section points to other Oracle documentation that contains related
information.

The Application Developer’s Guide - Fundamentals is intended for programmers
developing new applications or converting existing applications to run in the
Oracle environment. This Guide will also be valuable to systems analysts, project
managers, and others interested in the development of database applications.

This guide assumes that you have a working knowledge of application
programming, and that you are familiar with the use of Structured Query Language
(SQL) to access information in relational database systems.

Certain sections of this Guide also assume a knowledge of the basic concepts of
object oriented programming.

Feature Coverage and Availability

XX

The Application Developer’s Guide - Fundamentals contains information that describes
the features and functionality of the Oracle8i and the Oracle8i Enterprise Edition
products. Oracle8i and Oracle8i Enterprise Edition have the same basic features.
However, several advanced features are available only with the Enterprise Edition,
and some of these are optional. For example, to use object functionality, you must
have the Enterprise Edition and the Objects Option.

For information about the differences between Oracle8i and the Oracle8i Enterprise
Edition and the features and options that are available to you, see Getting to Know
Oracle8i.

Other Guides

Use the PL/SQL User’s Guide and Reference to learn PL/SQL and to get a complete
description of this high-level programming language, which is Oracle Corporation’s
procedural extension to SQL.

The Oracle Call Interface (OCI) is described in Oracle Call Interface Programmer’s
Guide

You can use the OCI to build third-generation language (3GL) applications that
access the Oracle Server.

Oracle Corporation also provides the Pro* series of precompilers, which allow you
to embed SQL and PL/SQL in your application programs. If you write 3GL
application programs in Ada, C, C++, COBOL, or FORTRAN that incorporate
embedded SQL, then refer to the corresponding precompiler manual. For example,
if you program in C or C++, then refer to the Pro*C/C++ Precompiler Programmer’s
Guide.

Oracle Developer/2000 is a cooperative development environment that provides
several tools including a form builder, reporting tools, and a debugging
environment for PL/SQL. If you use Developer/2000, then refer to the appropriate
Oracle Tools documentation.

For SQL information, see the Oracle8i SQL Reference and Oracle8i Administrator’s
Guide. For basic Oracle concepts, see Oracle8i Concepts.

XXi

How This Book Is Organized

XXii

The Application Developer’s Guide - Fundamentals contains the following major
sections.

Part I: Introduction

This part introduces several different ways that you can write Oracle applications.
You might need to use more than one language or development environment for a
single application. Some database features are only supported, or are easier to
access from, certain languages.

"Understanding the Oracle Programmatic Environments" outlines the strengths of
the languages, development environments, and APIs that Oracle provides.

Part I1: Designing the Database

Before you develop an application, you need to plan the characteristics of the
associated database. You must choose all the pieces that go into the database, and
how they are put together. Good database design helps ensure good performance
and scalability, and reduces the amount of application logic you code by making the
database responsible for things like error checking and fast data access.

"Managing Schema Objects" explains how to manage objects such as tables, views,
numeric sequences, and synonyms. It also discusses performance enhancements to
data retrieval through the use of indexes and clusters.

"Selecting a Datatype" explains how to represent your business data in the database.
The datatypes include fixed- and variable-length character strings, numeric data,
dates, raw binary data, and row identifiers (ROWID3.

"Maintaining Data Integrity" explains how to use constraints to move
error-checking logic out of your application and into the database.

"Selecting an Index Strategy" and"Speeding Up Index Access with Index-Organized
Tables"explain how to speed up queries.

"Processing SQL Statements" explains SQL topics such as commits, cursors, and
locking that you can take advantage of in your applications.

"Dynamic SQL" describes dynamic SQL, native dynamic SQL vs. the DBMS_SQL
package, when to use dynamic SQL.

"Using Procedures and Packages" explains how to store reusable procedures in the
database, and how to group procedures into packages. "External Routines" explains
how to code the bodies of computationally intensive procedures in languages other
than PL/SQL.

"Establishing Security Policies” explains how to move authentication logic out of
your application and into the database.

Part Ill: The Active Database

You can include all sorts of programming logic in the database itself, making the
benefits available to many applications and saving repetitious coding work.

"Using Triggers" explains how to make the database do special processing before,
after, or instead of running SQL statements. You can use triggers for things like
validating or transforming data, or logging database access. "Working With System
Events" explains how to retrieve information, such as the user ID and database
name, about the event that fires a trigger.

"Using Publish-Subscribe" introduces the Oracle model for asynchronous
communication, also known as messaging or queueing.

Part IV: Developing Specialized Applications

"Developing Web Applications with PL/SQL" explains how to create dynamic web
pages and applications that work with the Internet, e-mail, and so on, using the
PL/SQL language.

"Working with Transaction Monitors with Oracle XA" describes how to connect
Oracle with a transaction monitor.

XXili

Conventions Used in This Guide

XXiV

The following notational and text formatting conventions are used in this guide:

[]

Square brackets indicate that the enclosed item is optional. Do not type the brackets.

{}

Braces enclose items of which only one is required.

A vertical bar separates items within braces, and may also be used to indicate that
multiple values are passed to a function parameter.

In code fragments, an ellipsis means that code not relevant to the discussion has
been omitted.

font change
SQL or C code examples are shown in monospaced font.

italics
Italics are used for OCI parameters, OCI routines names, file names, and data fields.

UPPERCASE
Uppercase is used for SQL keywords, like SELECTor UPDATE

This guide uses special text formatting to draw the reader’s attention to some
information. A paragraph that is indented and begins with a bold text label may
have special meaning. The following paragraphs describe the different types of
information that are flagged this way.

Note: The "Note" flag indicates that you should pay particular attention to the
information to avoid a common problem or to increase understanding of a
concept.

Warning: An item marked as "Warning" indicates something that an OCI
programmer must be careful to do, or not do, in order for an application to
work correctly.

See Also: Text marked "See Also" points you to another section of this guide, or
to other documentation, for additional information about the topic being
discussed.

Your Comments Are Welcome

We value and appreciate your comment as an Oracle user and reader of our
manuals. As we write, revise, and evaluate our documentation, your opinions are
the most important feedback we receive.

You can send comments and suggestions about this manual to the following e-mail
address:

infodev@us.oracle.com

If you prefer, then you can send letters or faxes containing your comments to the
Information Development department at the following address:

Server Technologies Documentation Manager
Oracle Corporation

500 Oracle Parkway

Redwood Shores, CA 94065

Fax: (650) 506-7200

XXV

XXVi

Part |

Introduction To Working With The Server

This part contains the following chapter:

Chapter 1, "Understanding the Oracle Programmatic Environments"

Understanding the Oracle Programmatic
Environments

This chapter presents brief introductions to these application development systems:
« Overview of PL/SQL

=« Overview of OCI

« Overview of Oracle Objects for OLE

« Overview of Pro*C/C++

« Overview of Pro*COBOL

« Overview of Oracle JDBC

« Overview of Oracle SQLJ

« Choosing a Programming Environment

Understanding the Oracle Programmatic Environments 1-1

Overview of PL/SQL

Overview of PL/SQL

PL/SQL is Oracle’s procedural extension to SQL, the standard database access
language. An advanced 4GL (fourth-generation programming language), PL/SQL
offers seamless SQL access, tight integration with the Oracle server and tools,
portability, security, and modern software engineering features such as data
encapsulation, overloading, exception handling, and information hiding.

With PL/SQL, you can use SQL statements to manipulate Oracle data and flow-of-

control statements to process the data. You can also declare constants and variables,
define procedures and functions, use collections and object types, and trap run-time
errors. Thus, PL/SQL combines the data manipulating power of SQL with the data
processing power of procedural languages.

Applications written using any of the Oracle programmatic interfaces (Oracle Call
Interface, Java, Pro*C/C++, or Pro*COBOL) can call PL/SQL stored procedures and
send anonymous blocks of PL/SQL code to the server for execution. 3GL
applications have full access to PL/SQL scalar and composite datatypes via host
variables and implicit datatype conversion.

PL/SQL’s tight integration with Oracle Developer lets you use one language to
develop the client and server components of your application, which can be
partitioned to achieve optimum performance and scalability. Also, Oracle’s Web
Forms allows you to deploy your applications in a multi-tier Internet or intranet
environment without modifying a single line of code.

For more information see PL/SQL User’s Guide and Reference.

How Does PL/SQL Work?

A good way to get acquainted with PL/SQL is to look at a sample program.
Consider the procedure below, which debits a bank account. When called,
procedure debit_account accepts an account number and a debit amount. It uses
the account number to select the account balance from the database table. Then, it
uses the debit amount to compute a new balance. If the new balance is less than
zero, an exception is raised; otherwise, the bank account is updated.

PROCEDURE debit_account (acct_id INTEGER, amount REAL) IS
old_balance REAL;
new_balance REAL;
overdrawn EXCEPTION,;
BEGIN
SELECT bal INTO old_balance FROM accts
WHERE acct no=acct id;
new_balance :=old_balance - amount;

1-2 Application Developer's Guide - Fundamentals

Overview of PL/SQL

IF new_balance <O THEN
RAISE overdrawn;
ELSE
UPDATE accts SET bal =new_balance
WHERE acct_no=acct id;
ENDIF;
COMMIT;
EXCEPTION
WHEN overdrawn THEN
—handle the emror
END debit_account;

Advantages of PL/SQL

PL/SQL is a completely portable, high-performance transaction processing
language that offers the following advantages:

Full Support for SQL

PL/SQL lets you use all the SQL data manipulation, cursor control, and transaction
control commands, as well as all the SQL functions, operators, and pseudocolumns.
So, you can manipulate Oracle data flexibly and safely. Also, PL/SQL fully supports
SQL datatypes. That reduces the need to convert data passed between your
applications and the database.

PL/SQL also supports dynamic SQL, an advanced programming technique that
makes your applications more flexible and versatile. Your programs can build and
process SQL data definition, data control, and session control statements "on the fly"
at run time.

Tight Integration with Oracle

Both PL/SQL and Oracle are based on SQL, and PL/SQL supports all the SQL
datatypes. Combined with the direct access that SQL provides, these shared
datatypes integrate PL/SQL with the Oracle data dictionary.

The %TYPEnd %ROWTY Pdtributes further integrate PL/SQL with the data
dictionary. For example, you can use the %TYPHEattribute to declare variables,
basing the declarations on the definitions of database columns. If a definition
changes, the variable declaration changes accordingly at run time. This provides
data independence, reduces maintenance costs, and allows programs to adapt as
the database changes to meet new business needs.

Understanding the Oracle Programmatic Environments 1-3

Overview of PL/SQL

Better Performance

Without PL/SQL, Oracle must process SQL statements one at a time. Each SQL
statement results in another call to Oracle and higher performance overhead. In a
networked environment, the overhead can become significant. Every time a SQL
statement is issued, it must be sent over the network, creating more traffic.

However, with PL/SQL, an entire block of statements can be sent to Oracle at one
time. This can drastically reduce communication between your application and
Oracle. If your application is database intensive, you can use PL/SQL blocks to
group SQL statements before sending them to Oracle for execution.

PL/SQL stored procedures are compiled once and stored in executable form, so
procedure calls are quick and efficient. Also, stored procedures, which execute in
the server, can be invoked over slow network connections with a single call. This
reduces network traffic and improves round-trip response times. Executable code is
automatically cached and shared among users. That lowers memory requirements
and invocation overhead.

Higher Productivity

PL/SQL adds capabilities to non-procedural tools such as Oracle Forms and Oracle
Reports. With PL/SQL in these tools, you can use familiar procedural constructs to
build applications. For example, you can use an entire PL/SQL block in an Oracle
Forms trigger. You need not use multiple trigger steps, macros, or user exits. Thus,
PL/SQL increases productivity by putting better tools in your hands.

PL/SQL is the same in all environments. As soon as you master PL/SQL with one
Oracle tool, you can transfer your knowledge to other tools, and so multiply the
productivity gains. For example, scripts written with one tool can be used by other
tools.

Scalability

PL/SQL stored procedures increase scalability by isolating application processing
on the server. Also, automatic dependency tracking for stored procedures aids the
development of scalable applications.

The shared memory facilities of the Multithreaded Server (MTS) enable Oracle to
support 10,000+ concurrent users on a single node. For more scalability, you can use
the Net8 Connection Manager to multiplex Net8 connections.

1-4 Application Developer's Guide - Fundamentals

Overview of PL/SQL

Maintainability

Once validated, a PL/SQL stored procedure can be used with confidence in any
number of applications. If its definition changes, only the procedure is affected, not
the applications that call it. This simplifies maintenance and enhancement. Also,
maintaining a procedure on the server is easier than maintaining copies on various
client machines.

Support for Object-Oriented Programming

Object Types An object type is a user-defined composite datatype that encapsulates a
data structure along with the functions and procedures needed to manipulate the
data. The variables that form the data structure are called attributes. The functions
and procedures that characterize the behavior of the object type are called methods,
which you can implement in PL/SQL.

Obiject types are an ideal object-oriented modeling tool, which you can use to
reduce the cost and time required to build complex applications. Besides allowing
you to create software components that are modular, maintainable, and reusable,
object types allow different teams of programmers to develop software components
concurrently.

Collections A collection is an ordered group of elements, all of the same type (for
example, the grades for a class of students). Each element has a unique subscript
that determines its position in the collection. PL/SQL offers two kinds of
collections: nested tables and VARRAYs (short for variable-size arrays).

Collections, which work like the arrays found in most third-generation
programming languages, can store instances of an object type and, conversely, can
be attributes of an object type. Also, collections can be passed as parameters. So,
you can use them to move columns of data into and out of database tables or
between client-side applications and stored subprograms. Furthermore, you can
define collection types in a PL/SQL package, then use them programmatically in
your applications.

Portability

Applications written in PL/SQL can run on any operating system and hardware
platform where Oracle runs. You can write portable program libraries and reuse
them in different environments.

Understanding the Oracle Programmatic Environments 1-5

Overview of PL/SQL

Security

PL/SQL stored procedures enable you to partition application logic between the
client and server. That way, you can prevent client applications from manipulating
sensitive Oracle data. Database triggers written in PL/SQL can disable application
updates selectively and do content-based auditing of user queries.

Furthermore, you can restrict access to Oracle data by allowing users to manipulate
it only through stored procedures that execute with their definer’s privileges. For
example, you can grant users access to a procedure that updates a table, but not
grant them access to the table itself.

1-6 Application Developer's Guide - Fundamentals

Overview of OCI

Overview of OCI

The Oracle Call Interface (OCI) is an application programming interface (API) that
allows you to create applications that use a third-generation language’s native
procedures or function calls to access an Oracle database server and control all
phases of SQL statement execution. OCI provides:

« Improved performance and scalability through the efficient use of system
memory and network connectivity

« Consistent interfaces for dynamic session and transaction management in a
two-tier client-server or multi-tier environment

« N-tiered authentication
« Comprehensive support for application development using Oracle objects
« Access to external databases

« Ability to develop applications that service an increasing number of users and
requests without additional hardware investments

OCl allows you to manipulate data and schemas in an Oracle database using a host
programming language, such as C. It provides a library of standard database access
and retrieval functions in the form of a dynamic runtime library (OCILIB) that can
be linked in an application at runtime. This eliminates the need to embed SQL or
PL/SQL within 3GL programs.

For more information about the OCI calls, see Oracle Call Interface Programmer’s
Guide, Oracle8i Application Developer’s Guide - Advanced Queuing, Oracle8i National
Language Support Guide, and Oracle8i Data Cartridge Developer’s Guide.

Advantages of OCI

OCI provides significant advantages over other methods of accessing an Oracle
database:

« More fine-grained control over all aspects of the application design.
« High degree of control over program execution.

« Use of familiar 3GL programming techniques and application development
tools such as browsers and debuggers.

« Support of dynamic SQL,method 4.

« Auvailability on the broadest range of platforms of all the Oracle programmatic
interfaces.

Understanding the Oracle Programmatic Environments 1-7

Overview of OCI

Parts of the OCI

Dynamic bind and define using callbacks.
Describe functionality to expose layers of server metadata.
Asynchronous event notification for registered client applications.

Enhanced array data manipulation language (DML) capability for array
INSERTs, UPDATEsand DELETEs.

Ability to associate a commit request with an execute to reduce roundtrips.

Optimization for queries using transparent prefetch buffers to reduce
roundtrips.

Thread safety so you do not have to use mutual exclusive locks (mutex) on OCI
handles.

The server connection in non-blocking mode means that control returns to the
OCI code when a call is still executing or could not complete.

The OCI encompasses four main sets of functionality:

OCIl relational functions, for managing database access and processing SQL
statements

OCI navigational functions, for manipulating objects retrieved from an Oracle
database server

OCI datatype mapping and manipulation functions, for manipulating data
attributes of Oracle types

OCI external procedure functions, for writing C callbacks from PL/SQL

Procedural and Non-Procedural Elements

The Oracle Call Interface (OCI) allows you to develop applications that combine the
non-procedural data access power of Structured Query Language (SQL) with the
procedural capabilities of most programming languages, such as C and C++.

In a non-procedural language program, the set of data to be operated on is
specified, but what operations will be performed, or how the operations are to
be carried out is not specified. The non-procedural nature of SQL makes it an
easy language to learn and to use to perform database transactions. It is also the
standard language used to access and manipulate data in modern relational and
object-relational database systems.

1-8 Application Developer's Guide - Fundamentals

Overview of OCI

« Inaprocedural language program, the execution of most statements depends
on previous or subsequent statements and on control structures, such as loops
or conditional branches, which are not available in SQL. The procedural nature
of these languages makes them more complex than SQL, but it also makes them
very flexible and powerful.

The combination of both non-procedural and procedural language elements in an
OCI program provides easy access to an Oracle database in a structured
programming environment.

The OCI supports all SQL data definition, data manipulation, query, and
transaction control facilities that are available through an Oracle database server.
For example, an OCI program can run a query against an Oracle database. The
gueries can require the program to supply data to the database using input (bind)
variables, as follows:

SELECT name FROM employees WHERE empno = :empnumber

In the above SQL statement,:empnumber is a placeholder for a value that will be
supplied by the application.

You can also use PL/SQL, Oracle’s procedural extension to SQL. The applications
you develop can be more powerful and flexible than applications written in SQL
alone. The OCI also provides facilities for accessing and manipulating objects in an
Oracle database server.

Building an OCI Application

As Figure 1-1 shows, you compile and link an OCI program in the same way that
you compile and link a non-database application. There is no need for a separate
preprocessing or precompilation step.

Understanding the Oracle Programmatic Environments 1-9

Overview of OCI

Figure 1-1 The OCI Development Process

Source Files

'

L Host Language Compiler J

Object Files OCI Library
I !
Host Linker
_—
Application
N—

Note: On some platforms, it may be necessary to include other libraries, in
addition to the OCI library, to properly link your OCI programs. Check your
Oracle system-specific documentation for further information about extra

libraries that may be required.

1-10 Application Developer’s Guide - Fundamentals

Overview of Oracle Objects for OLE

Overview of Oracle Objects for OLE

Oracle Objects for OLE (O040) is a product designed to allow easy access to data
stored in Oracle databases with any programming or scripting language that
supports the Microsoft COM Automation and ActiveX technology. This includes
Visual Basic, Visual C++, Visual Basic For Applications (VBA), IIS Active Server
Pages (VBScript and JavaScript), and others.

0040 consists of the following software layers:
« 0040 "In-Process" Automation Server

= Oracle Data Control

» Oracle Objects for OLE C++ Class Library

Figure 1-2, "Software Layers" illustrates the OO40 software components.

Figure 1-2 Software Layers

Data Aware
ActiveX
Controls

Automation
C++ Class Oracle Data Controllers

Libraries Control (VB, Excel, ASP)

COM/DCOM

0040
In-Process

Automation
Server

Oracle Client
Libraries
(OCl, CORE,
NLS)

Oracle
Database

Note: See the OO040 online help for detailed information about using O0O40.

Understanding the Oracle Programmatic Environments 1-11

Overview of Oracle Objects for OLE

The 0040 Automation Server

The O040 Automation Server is a set of COM Automation objects for connecting to
Oracle database servers, executing SQL statements and PL/SQL blocks, and
accessing the results.

Unlike other COM-based database connectivity APIs, such as Microsoft ADO, the
0040 Automation Server has been developed and evolved specifically for use with
Oracle database servers.

It provides an optimized API for accessing features that are unique to Oracle and
are otherwise cumbersome or inefficient to use from ODBC or OLE
database-specific components.

0040 provides key features for accessing Oracle databases efficiently and easily in
environments ranging from the typical two-tier client/server applications, such as
those developed in Visual Basic or Excel, to application servers deployed in
multi-tiered application server environments such as web server applications in
Microsoft Internet Information Server (11S) or Microsoft Transaction Server (MTS).

Features include:

« Support for execution of PL/SQL anonymous blocks and stored procedures.
This includes support for Oracle datatypes allowed for input/output
parameters of PL/SQL stored procedures including PL/SQL cursors. See
"Support for Oracle LOB and Object Datatypes"” on page 1-17.

« Support for scrollable and updateable cursors for easy and efficient access to
result sets of queries.

« Thread-safe objects and Connection Pool Management Facility for developing
efficient web server applications.

« Full support for Oracle8i Object-Relational and LOB datatypes.
« Full support for Advanced Queuing in Oracle8i
« Support for array inserts and updates.

« Support for Microsoft Transaction Server (MTS).

0040 Object Model

The Oracle Objects for OLE object model is illustrated in Figure 1-3, "Objects and
Their Relation™.

1-12 Application Developer’s Guide - Fundamentals

Overview of Oracle Objects for OLE

Figure 1-3 Objects and Their Relation

[OraSession }

—(OraServer J

{ OraDatabase }

—(OraSQLStmt H OraField]J]
—(OraDynaset H OraParameter]J]
—(OraParameters J
—(OraParameterArray J
—(OraMetaData H OraMDAttribute]J]
—(OraAQ H OraAQMsg }

OraSession
An OrasSession object manages collections of OraDatabase, OraConnection, and
OraDynaset objects used within an application.

Typically, a single OraSession object is created for each application, but you can
create named OraSession objects for shared use within and between applications.

The OraSession object is the top-most level object for an application. It is the only
object created by the CreateObject VB/VBA API and not by an Oracle Objects for
OLE method. The following code fragment shows how to create an OraSession
object:

Dim OraSession as Object
Set OraSession = CreateObject("OraclelnProcServer.XOraSession')

OraServer
OraServer represents a physical network connection to an Oracle database server.

Understanding the Oracle Programmatic Environments 1-13

Overview of Oracle Objects for OLE

The OraServer interface is introduced to expose the connection multiplexing feature
provided in the Oracle Call Interface. After an OraServer object is created, multiple
user sessions (OraDatabase) can be attached to it by invoking the OpenDatabase
method. This feature is particularly useful for application components, such as
Internet Information Server (11S), that use Oracle Objects for OLE in an n-tier
distributed environments.

The use of connection multiplexing when accessing Oracle severs with a large
number of user sessions active can help reduce server processing and resource
requirements while improving the server scalability.

OraDatabase

An OraDatabase interface in the Oracle8i release adds additional methods for
controlling transactions and creating interfaces representing of Oracle object types.
Attributes of schema objects can be retrieved using the Describe method of the
OraDatabase interface.

In previous releases, an OraDatabase object is created by invoking the
OpenDatabase method of an OraSession interface. The Net8 alias, user name, and
password are passed as arguments to this method. In the Oracle8i release,
invocation of this method results in implicit creation of an OraServer object.

As described in the OraServer interface description, an OraDatabase object can also
be created using the OpenDatabase method of the OraServer interface.

Transaction control methods are available at the OraDatabase (user session) level.
Transactions may be started as Read-Write (default), Serializable, or Read-only.
These include:

« BeginTrans

« CommitTrans
« RollbackTrans
For example:

UserSession.BeginTrans(O040_TXN_READ_WRITE)
UserSession.ExecuteSQL('delete emp where empno = 1234")
UserSession.CommitTrans

OraDynaset

An OraDynaset object permits browsing and updating of data created from a SQL
SELECT statement.

1-14 Application Developer’s Guide - Fundamentals

Overview of Oracle Objects for OLE

The OraDynaset object can be thought of as a cursor, although in actuality several
real cursors may be used to implement the OraDynaset's semantics. An OraDynaset
automatically maintains a local cache of data fetched from the server and
transparently implements scrollable cursors within the browse data. Large queries
may require significant local disk space; application implementers are encouraged
to refine queries to limit disk usage.

OraField
An OraField object represents a single column or data item within a row of a
dynaset.

If the current row is being updated, then the OraField object represents the
currently updated value, although the value may not yet have been committed to
the database.

Assignment to the Value property of a field is permitted only if a record is being
edited (using Edit) or a new record is being added (using AddNew). Other attempts
to assign data to a field's Value property results in an error.

OraMetaData

An OraMetaData object is a collection of OraMDAttribute objects that represent the
description information about a particular schema object in the database.

The OraMetaData object can be visualized as a table with three columns:
« Metadata Attribute Name

« Metadata Attribute Value

« Flag specifying whether the Value is another OraMetaData Object

The OraMDAttribute objects contained in the OraMetaData object can be accessed
by subscripting using ordinal integers or by using the name of the property.
Referencing a subscript that is not in the collection (0 to Count-1) results in the
return of a NULL OraMDAttribute object.

OraParameter
An OraParameter object represents a bind variable in a SQL statement or PL/SQL
block.

OraParameter objects are created, accessed, and removed indirectly through the
OraParameters collection of an OraDatabase object. Each parameter has an
identifying name and an associated value. You can automatically bind a parameter

Understanding the Oracle Programmatic Environments 1-15

Overview of Oracle Objects for OLE

to SQL and PL/SQL statements of other objects (as noted in the objects’
descriptions), by using the parameter’s name as a placeholder in the SQL or
PL/SQL statement. Such use of parameters can simplify dynamic queries and
increase program performance.

OraParamArray

An OraParamArray object represents an "array" type bind variable in a SQL
statement or PL/SQL block as opposed to a "scalar” type bind variable represented
by the OraParameter object.

OraParamArray objects are created, accessed, and removed indirectly through the
OraParameters collection of an OraDatabase object. Each parameter has an
identifying name and an associated value.

OraSQLStmt

An OraSQLStmt Object represents a single SQL statement. Use the CreateSQL
method to create the OraSQLStmt object from an OraDatabase.

During create and refresh, OraSQLStmt objects automatically bind all relevant,
enabled input parameters to the specified SQL statement, using the parameter
names as placeholders in the SQL statement. This can improve the performance of
SQL statement execution without re-parsing the SQL statement.

SQLStmt

The SQLStmt object (updateStmt) can be later used to execute the same query using
a different value for the :SALARY placeholder. This is done as follows:

OraDatabase.Parameters("SALARY").value = 200000
updateStmt.Parameters('ENAME").value = "KING"
updateStmt.Refresh

OraAQ

An OraAQ object is instantiated by invoking the CreateAQ method of the
OraDatabase interface. It represents a queue that is present in the database.

Oracle Objects for OLE provides interfaces for accessing Oracle’s Advanced
Queuing (AQ) Feature. It makes AQ accessible from popular COM-based
development environments such as Visual Basic. For a detailed description of
Oracle AQ, please refer to Oracle8i Application Developer’s Guide - Advanced Queuing.

1-16 Application Developer’s Guide - Fundamentals

Overview of Oracle Objects for OLE

OraAQMsg
The OraAQMsg object encapsulates the message to be enqueued or dequeued. The
message can be of any user-defined or raw type.

For a detailed description of Oracle AQ, please refer to Oracle8i Application
Developer’s Guide - Advanced Queuing.

OraAQAgent
The OraAQAgent object represents a message recipient and is only valid for queues
which allow multiple consumers.

The OraAQAgent object represents a message recipient and is only valid for queues
which allow multiple consumers.

An OraAQAgent object can be instantiated by invoking the AQAgent method. For
example:

Set agent = gMsg.AQAgent(name)
An OraAQAgent object can also be instantiated by invoking the AddRecipient
method. For example:

Set agent = gMsg.AddRecipient(name, address, protocol).

Support for Oracle LOB and Object Datatypes

Oracle Objects for OLE provides full support for accessing and manipulating
instances of object datatypes and LOBs in an Oracle database server. Figure 1-4,
"Supported Oracle Datatypes" illustrates the datatypes supported by O0O40.

Instances of these types can be fetched from the database or passed as input or
output variables to SQL statements and PL/SQL blocks, including stored
procedures and functions. All instances are mapped to COM Automation Interfaces
that provide methods for dynamic attribute access and manipulation. These
interfaces may be obtained from:

Understanding the Oracle Programmatic Environments 1-17

Overview of Oracle Objects for OLE

Figure 1-4 Supported Oracle Datatypes

—(OraObject H OraAttribute]J]
(OraField —(OraRef H OraAttribute]J]
(OraParameter —(OraCollection H Element Values]J]

)
—[OraCLOB J
)

—(Value of all other scalar types }

OraBLOB and OraCLOB

The OraBlob and OraClob interfaces in OO40 provide methods for performing
operations on large objects in the database of data types BLOB, CLOB, and NCLOB.
In this help file BLOB, CLOB, and NCLOB datatypes are also referred to as LOB
datatypes.

LOB data is accessed using Read and the CopyToFile methods.

LOB data is modified using Write, Append, Erase, Trim, Copy, CopyFromFile, and
CopyFromBFile methods. Before modifying the content of a LOB column in a row, a
row lock must be obtained. If the LOB column is a field of an OraDynaset, then the
lock is obtained by invoking the Edit method.

OraBFILE

The OraBFile interface in O040 provides methods for performing operations on
large objects BFILE data type in the database.

The BFILEs are large binary data objects stored in operating system files (external)
outside of the database tablespaces.

1-18 Application Developer’s Guide - Fundamentals

Overview of Oracle Objects for OLE

The Oracle Data Control

The Oracle Data Control (ODC) is an ActiveX Control that is designed to simplify
the exchange of data between an Oracle database and visual controls such edit, text,
list, and grid controls in Visual Basic and other development tools that support
custom controls.

ODC acts an agent to handle the flow of information from an Oracle database and a
visual data-aware control, such as a grid control, that is bound to it. The data
control manages various user interface (Ul) tasks such as displaying and editing
data. It also executes and manages the results of database queries.

The Oracle Data Control is compatible with the Microsoft data control included
with Visual Basic. If you are familiar with the Visual Basic data control, learning to
use the Oracle Data Control is quick and easy. Communication between data-aware
controls and a Data Control is governed by a protocol that has been specified by
Microsoft.

The Oracle Objects for OLE C++ Class Library

The Oracle Objects for OLE C++ Class Library is a collection of C++ classes that
provide programmatic access to the Oracle Object Server. Although the class library
is implemented using OLE Automation, neither the OLE development kit nor any
OLE development knowledge is necessary to use it. This library helps C++
developers avoid the chore of writing COM client code for accessing the 0040
interfaces.

Additional Sources of Information

For detailed information about Oracle Objects for OLE refer to the online help that
is provided with the O0O40 product:

« Oracle Objects for OLE Help
« Oracle Objects for OLE C++ Class Library Help

To view examples of the use of Oracle Object for OLE, see the samples located in the
ORACLE_HOME\OO40 directory of the Oracle installation. Additional O040
examples can be found in the following Oracle publications, including:

= Oracle8i Application Developer’s Guide - Large Objects (LOBs)
= Oracle8i Application Developer’s Guide - Advanced Queuing
« Oracle8i Supplied PL/SQL Packages Reference

Understanding the Oracle Programmatic Environments 1-19

Overview of Pro*C/C++

Overview of Pro*C/C++

The Pro*C/C++ precompiler is a software tool that allows the programmer to
embed SQL statements in a C or C++ source file. Pro*C/C++ reads the source file as
input and outputs a C or C++ source file that replaces the embedded SQL
statements with Oracle runtime library calls, and is then compiled by the C or C++
compiler.

When there are errors found during the precompilation or the subsequent
compilation, modify your precompiler input file and re-run the two steps.

How You Implement a Pro*C/C++ Application

Here is a simple code fragment from a C source file that queries the table EMPwhich
is in the schema SCOTT

#define UNAME_LEN 10

int emp_number;
* Define a host structure for the output values of a SELECT statement. */
F*No declare section needed if precompiler option MODE=ORACLE ¥
struct{

VARCHAR emp_name[lUNAME._LEN];

float salary;

float commission;
}emprec;
* Define an indicator structure to correspond to the host output structure. */
struct{

shortemp_name_ind;

shortsal_ind;

short comm _ind;
}emprec_ind;

F Select columns ename, sal, and comm given the user’s input for empno. */
EXEC SQL SELECT ename, sal, comm
INTO :emprec INDICATOR :emprec_ind
FROM emp
WHERE empno = :emp_number;

The embedded SELECTstatement is only slightly different from an interactive
(SQL*PIlus) version. Every embedded SQL statement begins with EXEC SQL. The
colon, *’, precedes every host (C) variable. The returned values of data and
indicators (set when the data value is NULL or character columns have been

1-20 Application Developer’s Guide - Fundamentals

Overview of Pro*C/C++

truncated) can be stored in structs (such as in the above code fragment), in arrays,
or in arrays of structs. Multiple result set values are handled very simply in a
manner that resembles the case shown, where there is only one result, because of
the unique employee number. You use the actual names of columns and tables in
embedded SQL.

Use the default precompiler option values, or you can enter values which give you
control over the use of resources, how errors are reported, the formatting of output,
and how cursors (which correspond to a particular connection, a SQL statement,
etc.) are managed. Cursors are used when there are multiple result set values.

Enter the options either in a configuration file, on the command line, or inline inside
your source code with a special statement that begins with EXEC ORACLE. If there
are no errors found, you can then compile, link, and execute the output source file,
like any other C program that you write.

Use the precompiler to create server database access from clients that can be on
many different platforms. Pro*C/C++ allows you the freedom to design your own
user interfaces and to add database access to existing applications.

Before writing your embedded SQL statements, you may want to test interactive
versions of the SQL in SQL*Plus. You then make only minor changes to start testing
your embedded SQL application.

Highlights of Pro*C/C++ Features

The following is a short subset of the capabilities of Pro*C/C++. For complete
details, see the Pro*C/C++ Precompiler Programmer’s Guide.

You can write your application in either C or C++.

You can write multi-threaded programs if your platform supports a threads
package. Concurrent connections are supported in either single-threaded or
multi-threaded applications.

You can improve performance by embedding PL/SQL blocks. These blocks can call
functions or procedures written by you or provided in Oracle packages, in either
Java or PL/SQL.

Using precompiler options, you can check the syntax and semantics of your SQL or
PL/SQL statements during precompilation, as well as at runtime.

You can call stored PL/SQL and Java subprograms. Modules written in COBOL or
in C can be called from Pro*C/C++. External C procedures in shared libraries are
callable by your program.

Understanding the Oracle Programmatic Environments 1-21

Overview of Pro*C/C++

You can conditionally precompile sections of your code so that they can execute in
different environments.

You can use arrays, or structures, or arrays of structures as host and indicator
variables in your code to improve performance.

You can deal with errors and warnings so that data integrity is guaranteed. As a
programmer, you control how errors are handled.

Your program can convert between internal datatypes and C language datatypes.

The Oracle Call Interface (OCI), a lower-level C interface, is available for use in your
precompiler source.

Pro*C/C++ supports dynamic SQL, a technique that allows users to input variable
values and statement syntax.

New Oracle8 i Features Supported

Pro*C/C++ can use special SQL statements to manipulate tables containing
user-defined object types. An Object Type Translator (OTT) will map the object
types and named collection types in your database to structures and headers that
you will then include in your source.

Two kinds of collection types, nested tables and VARRAYS, are supported with a set
of SQL statements that allow a high degree of control over data.

Large Objects (LOBs, CLOBs, NCLOBs, and external files known as BFILES) are
accessed by another set of SQL statements.

A new ANSI SQL standard for dynamic SQL is supported for new applications, so
that you can execute SQL statements with a varying number of host variables. An
older technique for dynamic SQL is still usable by pre-existing applications.

National Language Support for multi-byte characters and UCS2 Unicode support
are provided.

1-22 Application Developer’s Guide - Fundamentals

Overview of Pro*COBOL

Overview of Pro*xCOBOL

The Pro*COBOL precompiler is a software tool that allows the programmer to
embed SQL statements in a COBOL source code file. Pro*COBOL reads the source
file as input and outputs a COBOL source file that replaces the embedded SQL
statements with Oracle runtime library calls, and is then compiled by the COBOL
compiler.

When there are errors found during the precompilation or the subsequent
compilation, modify your precompiler input file and re-run the two steps.

How You Implement a Pro*COBOL Application

Here is a simple code fragment from a source file that queries the table EMPwhich is
in the schema SCOTT

WORKING-STORAGE SECTION.
*
* DEFINE HOST INPUT AND OUTPUT HOST AND INDICATOR VARIABLES.
* NO DECLARE SECTION NEEDED IF MODE=ORACLE.
*
01 EMP-RECVARS.
05 EMP-NAME PIC X(10) VARYING.
05 EMP-NUMBER PIC S9(4) COMP VALUE ZERO.
05 SALARY PIC S9(5)V99 COMP-3 VALUE ZERO.
05 COMMISSION PIC S9(5)V99 COMP-3 VALUE ZERO.
05 COMMHND PIC S9(4) COMP VALUE ZERO.

PROCEDURE DIVISION.

EXEC SQL
SELECT ENAME, SAL, COMM
INTO :EMP-NAME, :SALARY, :COMMISSION:COMM-IND
FROM EMP
WHERE EMPNO =:EMP_NUMBE
END-EXEC.

The embedded SELECTstatement is only slightly different from an interactive
(SQL*PIlus) version. Every embedded SQL statement begins with EXEC SQL. The
colon, ', precedes every host (COBOL) variable. The SQL statement is terminated
by END-EXEC. The returned values of data and indicators (set when the data value
is NULL or character columns have been truncated) can be stored in group items

Understanding the Oracle Programmatic Environments 1-23

Overview of Pro*COBOL

(such as in the above code fragment), in tables, or in tables of group items. Multiple
result set values are handled very simply in a manner that resembles the case
shown, where there is only one result, given the unique employee number. You use
the actual names of columns and tables in embedded SQL.

Use the default precompiler option values, or you can enter values which give you
control over the use of resources, how errors are reported, the formatting of output,
and how cursors (which correspond to a particular connection, a SQL statement,
etc.) are managed.

Enter the options either in a configuration file, on the command line, or inline inside
your source code with a special statement that begins with EXEC ORACLE. If there
are no errors found, you can then compile, link, and execute the output source file,
like any other COBOL program that you write.

Use the precompiler to create server database access from clients that can be on
many different platforms. Pro*COBOL allows you the freedom to design your own
user interfaces and to add database access to existing COBOL applications.

The embedded SQL statements available conform to an ANSI standard, so that you
can access data from many databases in a program, including remote servers,
networked through Net8.

Before writing your embedded SQL statements, you may want to test interactive
versions of the SQL in SQL*Plus. You then make only minor changes to start testing
your embedded SQL application.

Highlights of Pro*COBOL Features

The following is a short subset of the capabilities of Pro*COBOL. For complete
details, see the Pro*COBOL Precompiler Programmer’s Guide.

You can call stored PL/SQL or Java subprograms. You can improve performance by
embedding PL/SQL blocks. These blocks can call PL/SQL functions or procedures
written by you or provided in Oracle packages.

Precompiler options allow you to define how cursors, errors, syntax-checking, file
formats, etc., are handled.

Using precompiler options, you can check the syntax and semantics of your SQL or
PL/SQL statements during precompilation, as well as at runtime.

You can conditionally precompile sections of your code so that they can execute in
different environments.

1-24 Application Developer’s Guide - Fundamentals

Overview of Pro*COBOL

Use tables, or group items, or tables of group items as host and indicator variables
in your code to improve performance.

You can program how errors and warnings are handled, so that data integrity is
guaranteed.

Pro*COBOL supports dynamic SQL, a technique that allows users to input variable
values and statement syntax.

New Oracle8 i Features Supported

Large Objects (LOBs, CLOBs, NCLOBs, and external files known as BFILES) are
accessed by another set of SQL statements.

A new ANSI SQL standard for dynamic SQL is supported for new applications, so
that you can execute SQL statements with a varying number of host variables. An
older technique for dynamic SQL is still usable by pre-existing applications.

Pro*COBOL has many features that are compatible with DB2, for easier migration.

Understanding the Oracle Programmatic Environments 1-25

Overview of Oracle JDBC

Overview of Oracle JDBC

JDBC (Java Database Connectivity) is an APl (Applications Programming Interface)
which allows Java to send SQL statements to an object-relational database such as
Oracle8i.

The JDBC standard defines four types of JDBC drivers:
« Type 1. AJDBC-ODBC bridge. Software must be installed on client systems.

= Type 2. Has Native methods (calls C or C++) and Java methods. Software must
be installed on the client.

« Type 3. Pure Java. The client uses sockets to call middleware on the server.

« Type 4. The most pure Java solution. Talks directly to the database using Java
sockets.

JDBC is based on the X/Open SQL Call Level Interface, and complies with the
SQL92 Entry Level standard.

Use JDBC to do dynamic SQL. Dynamic SQL means that the embedded SQL
statement to be executed is not known before the application is run, and requires
input to build the statement.

The drivers that are implemented by Oracle have extensions to the capabilities in
the JDBC standard that was defined by Sun Microsystems. Oracle’s
implementations of JDBC drivers are described next:

JDBC Thin Driver

The JDBC Thin driver is a Type 4 (100% pure Java) driver that uses Java sockets to
connect directly to a database server. It has its own implementation of a TTC, a
lightweight implementation of a TCP/IP version of Oracle’s Net8. It is written
entirely in Java and is therefore platform-independent.

The Thin driver does not require Oracle software on the client side. It does need a
TCP/IP listener on the server side. Use this driver in Java applets that are
downloaded into a Web browser. The Thin driver is self-contained, but it opens a
Java socket, and thus can only run in a browser that supports sockets.

JDBC OCI Driver

The OCI driver is a Type 2 JDBC driver. It makes calls to the OCI (Oracle Call
Interface) which is written in C, to interact with an Oracle database server, thus
using native and Java methods.

1-26 Application Developer’s Guide - Fundamentals

Overview of Oracle JDBC

Because it uses native methods (a combination of Java and C) the OCI driver is
platform-specific. It requires a client Oracle8i installation including Net8, OCI
libraries, CORE libraries, and all other dependent files. The OCI driver usually
executes faster than the thin driver.

The OCI driver is not appropriate for Java applets, because it uses a C library that is
platform-specific and cannot be downloaded into a Web browser. It is usable in the
Oracle Web Application Server which is a collection of middleware services and
tools that supports access from and to applications from browsers and CORBA
(Common Object Request Broker Architecture) clients.

The JDBC Server Driver

The JDBC server driver is a Type 2 driver that runs inside the database server and
therefore reduces the number of round-trips needed to access large amounts of
data. The driver, the Java server VM, the database, the NCOMP native compiler
which speeds execution by as much as 10 times, and the SQL engine all run within
the same address space.

This driver provides server-side support for any Java program used in the database:
SQLJ stored procedures, functions, and triggers, Java stored procedures, CORBA
objects, and EJB (Enterprise Java Beans). You can also call PL/SQL stored
procedures, functions, and triggers.

The server driver fully supports the same features and extensions as the client-side
drivers.

Extensions of JDBC

Among the Oracle extensions to the JDBC 1.22 standard are:
« Support for Oracle datatypes

« Performance enhancement by row prefetching

« Performance enhancement by execution batching

« Specification of query column types to save round-trips

« Control of DatabaseMetaData calls

Sample Program for the JDBC Thin Driver

The following source code registers an Oracle JDBC Thin driver, connects to the
database, creates a Statement object, executes a query, and processes the result set.

Understanding the Oracle Programmatic Environments 1-27

Overview of Oracle JDBC

The SELECTstatement retrieves and lists the contents of the ENAMEolumn of the
EMPtable.

import java.sgl.*
import javamath.*
import java.io*
import java.awt*

class JdbcTest{
public static void main (String args []) throws SQLException {
/I Load Oracle driver
DriverManager.registerDriver (new oracle.jdbc.dnlddriver.OracleDriver());

I/ Connect to the local database
Connection conn=
DriverManager.getConnection (jdbc:oracle:dnldthin:@myhost:1521:orcl",
"scott’, "tiger”);

I Query the employee names
Statement stmt = conn.createStatement ();
ResultSet rset = simt.executeQuery ("SELECT ENAME FROM EMP");

/I Print the name out
while (rsetnext ())
System.out.printin (rset.getString (1));
/l Close the resullt set, statement, and the connection
rset.close();
stmt.close();
conn.close();
}
}

An Oracle extension to the JDBC drivers is a form of the getConnection()

method that uses a Properties object. The Properties object lets you specify
user, password, and database information as well as row prefetching and execution
batching.

To use the OCI driver in this code, replace the Connection statement with:
Connection conn = DriverManager.getConnection (' jdbc:oracle:oci8:@MyHostString",

"scott”’, "tiger”);
where MyHostString is an entry in the TNSNAME®RAfile.

If you are creating an applet, the getConnection() and registerDriver()
strings will be different.

1-28 Application Developer’s Guide - Fundamentals

Overview of Oracle JDBC

Java in the RDBMS

The Oracle Database Server stores Java classes as well as PL/SQL subprograms.
Except for GUI methods, any Java method can run in the RDBMS as a stored
procedure. The following database constructs are supported:

Functions and Procedures

You write these named blocks and then define them using the loadjava, SQL
CREATE FUNCTIONCREATE PROCEDURIEd/or CREATE PACKAGHatements.
These Java methods can accept arguments and are callable from:

SQL CALL statements.

Embedded SQL CALL statements.

PL/SQL blocks, subprograms and packages.

DML statements (INSERT, UPDATEDELETE and SELECT).

Oracle development tools such as OCI, Pro*C/C++ and Oracle Developer.

Oracle Java interfaces such as JDBC, SQLJ statements, CORBA, and Enterprise
Java Beans.

Database Triggers

A database trigger is a stored procedure that Oracle invokes (“fires") automatically
whenever a given DML operation modifies the trigger’s table or schema. Triggers

allow you to enforce business rules, prevent invalid values from being stored, and
take many other actions without the need for you to explicitly call them.

Why Use Stored Procedures?

Stored procedures are compiled once, are easy to use and maintain, and require
less memory and computing overhead.

Network bottlenecks are avoided, and response time is improved. Distributed
applications are easier to build and use.

Computation-bound procedures run faster in the server.

Data access can be controlled by letting users only have stored procedures that
execute with their definer’s privileges instead of invoker’s rights.

PL/SQL and Java stored procedures can call each other.

Understanding the Oracle Programmatic Environments 1-29

Overview of Oracle SQLJ

« Javain the server follows the Java language specification and can use the SQLJ
standard, so that non-Oracle databases are also supported.

« Stored procedures can be reused in different applications as well as different
geographic sites.

JDBC in SQLJ Applications

JDBC code and SQLJ code (see "Overview of Oracle SQLJ" on page 1-30)
interoperates, allowing dynamic SQL statements in JDBC to be used with static SQL
statements in SQLJ. A SQLJ iterator class corresponds to the JDBC result set. For
more information on JDBC, see Oracle8i JDBC Developer’s Guide and Reference.

Overview of Oracle SQLJ
SQLJis:

« Alanguage specification for embedding static SQL statements in Java source
code which has been agreed to by a consortium of database companies,
including Oracle, and by Sun, author of Java. The specification has been
accepted by ANSI as a software standard.

« A software tool developed by Oracle to the standard, with extensions to the
standard to support Oracle8i features. That tool is the subject of this brief
overview.

SQLJ Tool

The Oracle software tool SQLJ has two parts: a translator and a runtime. You
execute on any Java VM with a JDBC driver and a SQLJ runtime library.

A SQLJ source file is a Java source file containing embedded static SQL statements.
The SQLJ translator is 100% Pure Java and is portable to any standard JDK 1.1 or
higher VM.

The Oracle8i SQLJ implementation runs in three steps:

« Translates SQLJ source to Java code with calls to the SQLJ runtime. The SQLJ
translator converts the source code to pure Java source code, and can check the
syntax and semantics of static SQL statements against a database schema and
verify the type compatibility of host variables with SQL types.

« Compiles using the Java compiler.

1-30 Application Developer’s Guide - Fundamentals

Overview of Oracle SQLJ

« Customizes for the target database. SQLJ generates "profile” files with
Oracle-specific customizing.

Oracle8i supports SQLJ stored procedures, functions, and triggers which execute in
a Java VM integrated with the data server. SQLJ is integrated with Oracle’s
JDeveloper. Source-level debugging support is available in JDeveloper.

Here is an example of the simplest SQLJ executable statement, which returns one
value because empno is unique in the emptable:

String name;
#sgl { SELECT ename INTO :name FROM emp WHERE empno=67890};
System.out prinin(‘Name is " + name + ", employee number =" + empno);

Each host variable (or qualified name or complex Java host expression) is preceded
by a colon (). Other SQLJ statements are declarative (declares Java types) and allow
you to declare an iterator (a construct related to a database cursor) for queries that
retrieve many values:

#sq| iterator Emplter (String EmpNam, int EmpNumby);

SQLJ Design Goals

The primary goal is to provide simple extensions to Java to allow rapid
development and easy maintenance of Java applications that use embedded SQL to
interact with databases.

Specific goals in support of the primary goal are:

« Provide a concise, legible mechanism for database access via static SQL. Most
SQL in applications is static. SQLJ provides more concise and less error-prone
static SQL constructs than JDBC does.

« Check static SQL at translate time.

« Provide flexible deployment configurations. This makes it possible to
implement SQLJ on the client or database side or in the middle tier.

« Support a software standard. SQLJ is an effort of a group of vendors and will be
supported by all of them. Applications can access multiple database vendors.

« Provide source code portability. Executables can be used with all of the
vendors’ DBMSs presuming the code does not rely on any vendor-specific
features.

Understanding the Oracle Programmatic Environments 1-31

Overview of Oracle SQLJ

Strengths of Oracle’s SQLJ Implementation

Uniform programming style for the clients and the servers.

Integration of the SQLJ translator with JDeveloper, a graphical IDE that
provides SQLJ translation, Java compilation, profile customizing, and
debugging at the source code level, all in one step.

SQL Checker module for verification of syntax and semantics at translate-time.

Oracle type extensions. Datatypes supported are LOBs, ROWIDs, REF
CURSORs, VARRAYS, nested tables, user-defined object types, as well as other
datatypes such as RAW and NUMBER.

Comparison of SQLJ with JDBC

JDBC provides a complete dynamic SQL interface from Java to databases. SQLJ fills
a complementary role.

JDBC provides fine-grained control of the execution of dynamic SQL from Java,
while SQLJ provides a higher level static binding to SQL operations in a specific
database schema. Here are some differences:

SQLJ source code is more concise than equivalent JDBC source code.

SQLJ uses database connections to type-check static SQL code. JDBC, being a
completely dynamic API, does not.

SQLJ programs allow direct embedding of Java bind expressions within SQL
statements. JDBC requires a separate get and/or set call statement for each bind
variable and specifies the binding by position number.

SQLJ provides strong typing of query outputs and return parameters and
allows type-checking on calls. JDBC passes values to and from SQL without
compile-time type checking.

SQLJ provides simplified rules for calling SQL stored procedures and functions.
The JDBC specification requires a generic call to a stored procedure (or
function), fun, to have the following syntax (we show SQL92 and Oracle escape
syntaxes, which are both allowed):

prepStmt.prepareCall(‘{call fun(?,?)}"); /istored procedure SQL92
prepStmt.prepareCall(*{? = call fun(?,?)}"); /istored function SQL92
prepStmt.prepareCall("begin fun(:1,:2);,end;"); //stored procedure Oracle
prepStmt.prepareCall("begin :1 := fun(:2,:3);,end;");//stored func Oracle

SQLJ provides simplified notations:

1-32 Application Developer’s Guide - Fundamentals

Overview of Oracle SQLJ

#sgl {call fun(param fist)}; //Stored procedure
I/ Declare x

#sgl x = {VALUES(fun(param _list)}, I/ Stored function
/Iwhere VALUES is the SQL construct

Here are similarities:
« SQLJ source files can contain JDBC calls. SQLJ and JDBC are interoperable.

« Oracle’s JPublisher tool generates custom Java classes to be used in your SQLJ
or JDBC application for mappings to Oracle object types and collections.

« Javaand PL/SQL stored procedures can be used interchangeably.

SQLJ Example for Object Types

Here is a simple use of user-defined objects and object refs taken from Oracle8i SQLJ
Developer’s Guide and Reference, where more information on SQLJ is available:

The following items are created using the SQL script below:
« Two object types, PERSONind ADDRESS
« Atyped table for PERSOMbjects

« An EMPLOYEHRable that includes an ADDRESSolumn and two columns of
PERSONeferences

SETECHOON,;
/
= Clean up in preparation **/
DROP TABLE EMPLOYEES
/
DROP TABLE PERSONS
/
DROP TYPE PERSON FORCE
/
DROP TYPE ADDRESS FORCE
/
f** Create address UDT **/
CREATE TYPE address AS OBJECT
(
street VARCHAR(60),
cty VARCHAR(30),
state CHAR(2),
Zip_ code CHAR(S)

Understanding the Oracle Programmatic Environments 1-33

Overview of Oracle SQLJ

)
/

e+ Create person UDT containing an embedded address UDT *+/
CREATE TYPE person AS OBJECT
(
name VARCHAR(30),
ssn NUMBER,
addr address
)
/
[** Create a typed table for person objects ***/
CREATE TABLE persons OF person
/
=+ Create a relational table with two columns that are REFs
to person objects, as well as a column which is an Address ADT. */
CREATE TABLE employees
(
empnumber INTEGER PRIMARY KEY,
person_data REF person,
manager REF person,
office_addr address,
salary NUMBER
)
F** Insert some data—2 objects into the persons typed table *+*/
INSERT INTO persons VALUES (
person(Woligang Amadeus Mozart, 123456,
address(Am Berg 100, 'Salzburg), 'AT,10424)))
/
INSERT INTO persons VALUES (
person(Ludwig van Beethoven', 234567,
address(Rheinallee’, 'Bonn', 'DE, '69234)))
/
F* Put a row in the employees table */
INSERT INTO employees (empnumber, office_addr, salary) VALUES (
1001,
address('500 Oracle Parkway, 'Redwood Shores), 'CA, '94065),
50000)
/
F** Set the manager and person REFs for the employee */
UPDATE employees
SET manager =
(SELECT REF(p) FROM persons p WHERE p.name = "Wolfgang Amadeus Mozart)
/
UPDATE employees
SET person_data =

1-34 Application Developer’s Guide - Fundamentals

Overview of Oracle SQLJ

(SELECT REF(p) FROM persons p WHERE p.name = Ludwig van Beethoven
/
COMMIT
/
QUIT

Next, JPublisher is used to generate the Address class for mapping to Oracle
ADDRES®bjects. We omit the details.

The following SQLJ sample declares and sets an input host variable of Java type
Address to update an ADDRES®bject in a column of the employees table. Both
before and after the update, the office address is selected into an output host
variable of type Address and printed for verification.

/I Updating an object

static void updateObject()
{

Address addr;
Address new_addr;
intempno=1001;

try{
#sal{
SELECT office_addr
INTO :addr
FROM employees
WHERE empnumber =:empno};
System.out.printin(‘Current office address of employee 1001.");

printAddressDetails(addr);
FNow update the street of address */

String street ="100 Oracle Parkway';
addr.setStreet(street);

I+ Put updated object back into the database */

ty{
#sql{
UPDATE employees
SET office_addr =:addr

Understanding the Oracle Programmatic Environments 1-35

Overview of Oracle SQLJ

WHERE empnumber =:empno};
System.outprintin
("Updated employee 1001 to new address at Oracle Parkway.");

P Select new address to verify update */

try{
#sal{
SELECT office_addr
INTO :new_addr
FROM employees
WHERE empnumber =:empno};

System.out.printin("New office address of employee 1001:");
printAddressDetails(new_addr);

} catch (SQLEXxception exn) {
System.out printin("Verification SELECT failed with "+exn); }

}catch (SQLException exn) {
System.out.prinin("'UPDATE failed with "+exn); }

}catch (SQLEXception exn) {
System.out.prinin(*SELECT failed with "“+exn); }
}

Note the use of the setStreet() accessor method of the Address instance.
Remember that JPublisher provides such accessor methods for all attributes in any
custom Java class that it produces.

SQLJ Stored Procedures in the Server

SQLJ applications can be stored and run in the server. You have the option of
translating, compiling, and customizing SQLJ source on a client and loading the
generated classes and resources into the server with the loadjava utility, typically
using a Java archive (.jar) file.

Or, you have a second option of loading SQLJ source code into the server, also using
loadjava , and having it translated and compiled by the server’s embedded
translator.

1-36 Application Developer’s Guide - Fundamentals

Choosing a Programming Environment

Choosing a Programming Environment

To choose a programming environment for a new development project:

Review the preceding overviews and the manuals for each environment.

Read the platform-specific manual that explains which compilers are approved
for use with your platforms.

Remember that PL/SQL stored procedures can be called from code written in
any of the languages in this chapter. Java stored procedures are also available
from Pro*C/C++, OCI, and Pro*xCOBOL programs. Stored procedures include
triggers and object type methods.

External procedures written in C are also callable from OCI, Java, PL/SQL or
SQL. The external procedure itself can call back into the database using either
SQL, OCI, or Pro*C (but not C++).

The following examples illustrate easy choices:

Pro*COBOL does not support object types or collection types, while Pro*C/C++
does.

SQLJ does not support dynamic SQL the way that JDBC does.

Use OCI or a Precompiler?

The use of OCI rather than a precompiler is often dictated by technical
requirements because some tasks cannot be done solely with precompiler
statements:

OCI provides more detailed control over multiplexing and migrating sessions.

OCI provides dynamic bind and define using callbacks that can be used for any
arbitrary structure, including lists.

OCI has many calls to handle metadata.

OCl allows asynchronous event notifications to be received by a client
application. It provides a means for clients to generate notifications for
propagation to other clients.

OCI allows DML statements to use arrays to complete as many iterations as
possible and then return a batch of errors.

OCI calls for special purposes include Advanced Queuing, National Language
Support, Data Cartridges, and support of the Datetime datatypes.

Understanding the Oracle Programmatic Environments 1-37

Choosing a Programming Environment

« OCil calls can be embedded in a Pro*C/C++ application.

Built-in Packages and Libraries

Both Java and PL/SQL have built-in packages and libraries. PL/SQL has libraries
such as:

Application Development Packages
« DBMS_PIPE is used to communicate between sessions.

« DBMS_ALERT is used to broadcast alerts to users.

« DBMS _LOCK and DBMS_TRANSACTION are used for lock and transaction
management.

« DBMS_AQ is used for Advanced Queuing.

« DBMS_LOB is for your manipulation of large objects.
« DBMS_ROWID is used for employing ROWIDs.

« UTL_RAW is for the RAW facility.

« UTL_REF is for work with REFs.

Server Management Packages
« DBMS_SESSION is for session management by DBAsS.

« DBMS_SYSTEM is used to set events for debugging.

« DBMS_SPACE and DBMS_SHARED_POOL obtain space information and
reserve shared pool resources.

« DBMS_JOB is used to schedule jobs in the server.

Distributed Database Access

These provide access to snapshots, advanced replication, conflict resolution,
deferred transactions, and remote procedure calls.

See Table 9-2, "List of Oracle Supplied Packages".

Java libraries include:

Core JDK Libraries
These are the libraries such as java.lang, java.io, etc.

1-38 Application Developer’s Guide - Fundamentals

Choosing a Programming Environment

Other Libraries

These are libraries such as Java-based CORBA ORB, EJB (Enterprise Java Beans),
Java-based XML Parser, and Java Web Server.

PL/SQL and Java interoperate in the server. You can execute a PL/SQL package
from Java or wrap a PL/SQL class with a Java wrapper so that it can be called from
distributed CORBA and EJB clients. The following table shows PL/SQL packages
and their Java equivalents:

Table 1-1 PL/SQL and Java Equivalent Software

PL/SQL Package

Java Equivalent

DBMS_ALERT
DBMS_DDL
DBMS_JOB
DBMS_LOCK
DBMS_MAIL
DBMS_OUTPUT

DBMS_PIPE
DBMS_SESSION
DBMS_SNAPSHOT
DBMS_SQL
DBMS_TRANSACTION
DBMS_UTILITY
UTL_FILE

Call package with SQLJ or JDBC.

JDBC has this functionality.

Schedule a job that has a Java Stored procedure.
Call with SQLJ or JDBC.

Use JavaMail.

Use subclass
oracle.aurora.rdbms.OracleDBMSOutputStream
Java stored procedure DBMS_JAVA.SET_STREAMS

Call with SQLJ or JDBC.

Use JDBC to execute an ALTER SESSION statement.
Call with SQLJ or JDBC.

Use JDBC.

Use JDBC to execute an ALTER SESSION statement.
Call with SQLJ or JDBC.

or

Grant the JAVAUSERPRIVprivilege and then use Java IO entry

points.

Java vs. PL/SQL

Both Java and PL/SQL can be used to build applications in the database and will
have future performance improvements. Here are guidelines for their use:

Understanding the Oracle Programmatic Environments 1-39

Choosing a Programming Environment

PL/SQL is Optimized for Database Access

PL/SQL uses the same datatypes as SQL. SQL datatypes are thus easier to use and
SQL operations are faster than with Java, especially when a large amount of data is
involved, when mostly database access is done, or when bulk operations are used.

PL/SQL is Integrated with the Database
PL/SQL is the extension to SQL and uses the same datatypes. PL/SQL has data
encapsulation, information hiding, overloading, and exception-handling.

Many optimal capabilities that PL/SQL has had for a long time were not yet
implemented for Java in Oracle8i. Examples are autonomous transactions and the
dblink facility for remote databases. Code development is usually faster than when
using Java.

Java is Optimized for Computation

Java executes much faster than PL/SQL when they are not doing any database
access and it is better than PL/SQL at all complex object-oriented and
CPU-intensive applications.

Java has inheritance, polymorphism, and component models for developing
distributed systems. PL/SQL does not.

Java Is Used for Open Distributed Applications

Java has a richer type system than PL/SQL and is an object-oriented language. Java
can use CORBA (which can have many different computer languages in its clients)
and EJB. However, PL/SQL packages can also be called from CORBA or EJB clients.

You can run XML tools, the Internet File System, or JavaMail from Java.

1-40 Application Developer’s Guide - Fundamentals

Part ||

Designing the Database

This part contains the following chapters:

Chapter 2, "Managing Schema Objects"

Chapter 3, "Selecting a Datatype"

Chapter 4, "Maintaining Data Integrity"

Chapter 5, "Selecting an Index Strategy"

Chapter 6, "Speeding Up Index Access with Index-Organized Tables"
Chapter 7, "Processing SQL Statements”

Chapter 8, "Dynamic SQL"

Chapter 9, "Using Procedures and Packages"

Chapter 10, "External Routines"

Chapter 11, "Establishing Security Policies"

2

Managing Schema Objects

This chapter discusses the procedures necessary to create and manage the different
types of objects contained in a user’s schema. The topics include:

Managing Tables

Managing Temporary Tables

Managing Views

Modifying a Join View

Managing Sequences

Managing Synonyms

Creating Multiple Tables and Views in One Operation

Naming Schema Objects

Renaming Schema Objects

Listing Information about Schema Objects

See Also:

Indexes and clusters — Chapter 5

Procedures, functions, and packages — Chapter 9

Object types — Oracle8i Application Developer’s Guide -

Object-Relational Features

Dependency information — Chapter 9

If you use symmetric replication, then see Oracle8i Replication
for information on managing schema objects, such as

snapshots.

Managing Schema Objects 2-1

Managing Tables

Managing Tables

A table is the data structure that holds data in a relational database. A table is
composed of rows and columns.

A table can represent a single entity that you want to track within your system. This
type of a table could represent a list of the employees within your organization, or
the orders placed for your company’s products.

A table can also represent a relationship between two entities. This type of a table
could portray the association between employees and their job skills, or the
relationship of products to orders. Within the tables, foreign keys are used to
represent relationships.

Although some well designed tables could represent both an entity and describe the
relationship between that entity and another entity, most tables should represent
either an entity or a relationship. For example, the EMP_TARable describes the
employees in a firm, but this table also includes a foreign key column, DEPTNO
which represents the relationships of employees to departments.

The following sections explain how to create, alter, and drop tables. Some simple
guidelines to follow when managing tables in your database are included.

See Also: The Oracle8i Administrator’s Guide has more
suggestions. You should also refer to a text on relational database or
table design.

2-2 Application Developer's Guide - Fundamentals

Managing Tables

Designing Tables

Consider the following guidelines when designing your tables:
« Use descriptive names for tables, columns, indexes, and clusters.

« Beconsistent in abbreviations and in the use of singular and plural forms of
table names and columns.

« Document the meaning of each table and its columns with the COMMENT
command.

« Normalize each table.
« Select the appropriate datatype for each column.
« Define columns that allow nulls last, to conserve storage space.

« Cluster tables whenever appropriate, to conserve storage space and optimize
performance of SQL statements.

Before creating a table, you should also determine whether to use integrity
constraints. Integrity constraints can be defined on the columns of a table to enforce
the business rules of your database automatically.

See Also: See Chapter 4, "Maintaining Data Integrity" for
guidelines.

Managing Schema Objects 2-3

Managing Tables

Creating Tables

To create a table, use the SQL command CREATE TABLEFor example, if the user
SCOTTissues the following statement, he creates a non-clustered table named Emp_
tab in his schema that is physically stored in the USERSablespace. Notice that
integrity constraints are defined on several columns of the table.

CREATE TABLE Emp_tab (
Empno NUMBER() PRIMARY KEY,
Ename VARCHAR2(15)NOT NULL,
Job VARCHAR2(10),
Mgr NUMBERG),
Hiredate DATE DEFAULT (sysdate),
Sa NUMBER(7.2),
Comm NUMBER(7,2),
Depno NUMBER(3) NOT NULL,
CONSTRAINT dept_afkey REFERENCES Dept_tab(Deptno))
PCTFREE 10
PCTUSED 40
TABLESPACE users
STORAGE (INITIAL 50K
NEXT 50K
MAXEXTENTS 10
PCTINCREASE 25);

Managing the Space Usage of Data Blocks
The following sections explain the PCTFREEand PCTUSEDparameters help you to:

« Increase the performance of writing and retrieving a data or index segment
« Decrease the amount of unused space in data blocks

« Decrease the amount of row chaining between data blocks

Specifying PCTFREE

The PCTFREHRefault is 10 percent; any integer from 0 to 99 is acceptable, as long as
the sum of PCTFREEand PCTUSEDIoes not exceed 100. (If PCTFREHS set to 99,
then Oracle puts at least one row in each block, regardless of row size. If the rows
are very small and blocks very large, then even more than one row might fit.)

A lower PCTFREE
« Reserves less room for updates to existing table rows

« Allows inserts to fill the block more completely

2-4 Application Developer's Guide - Fundamentals

Managing Tables

« Might save space, because the total data for a table or index is stored in fewer
blocks (more rows or entries per block)

« Increases processing costs because blocks frequently need to be reorganized as
their free space area becomes filled with new or updated data

« Potentially increases processing costs and space required if updates to rows or
index entries cause rows to grow and span blocks (because UPDATEDELETE
and SELECTstatements might need to read more blocks for a given row and
because chained row pieces contain references to other pieces)

A higher PCTFREE
« Reserves more room for future updates to existing table rows

« Might require more blocks for the same amount of inserted data (inserting
fewer rows per block)

« Lessens processing costs, because blocks infrequently need reorganization of
their free space area

« Might improve update performance, because Oracle must chain row pieces less
frequently, if ever

In setting PCTFREEyou should understand the nature of the table or index data.
Updates can cause rows to grow. When using NUMBERVARCHARZ2LONGor LONG
RAWhew values might not be the same size as values they replace. If there are many
updates in which data values get longer, then increase PCTFREEIf updates to rows
do not affect the total row width, then PCTFREEan be low.

Your goal is to find a satisfactory trade-off between densely packed data (low
PCTFREEfull blocks) and good update performance (high PCTFREEless-full
blocks).

PCTFRERlso affects the performance of a given user’s queries on tables with
uncommitted transactions belonging to other users. Assuring read consistency
might cause frequent reorganization of data in blocks that have little free space.

PCTFREE for Non-Clustered Tables If the data in the rows of a non-clustered table is

likely to increase in size over time, then reserve space for these updates. If you do
not reserve room for updates, then updated rows are likely to be chained between
blocks, reducing 1/0 performance associated with these rows.

PCTFREE for Clustered Tables The discussion for non-clustered tables also applies to
clustered tables. However, if PCTFREHS reached, then new rows from any table

Managing Schema Objects 2-5

Managing Tables

contained in the same cluster key go into a new data block chained to the existing
cluster key.

PCTFREE for Indexes Indexes infrequently require the use of free space for updates
to index data. Therefore, the PCTFREEvalue for index segment data blocks is
normally very low (for example, 5 or less).

Specifying PCTUSED

Once the percentage of free space in a data block reaches PCTFREENO new rows
are inserted in that block until the percentage of space used falls below PCTUSED
Oracle tries to keep a data block at least PCTUSEDull. The percent is of block space
available for data after overhead is subtracted from total space.

The default for PCTUSEDSs 40 percent; any integer between 0 and 99, inclusive, is
acceptable as long as the sum of PCTUSEDand PCTFREEdoes not exceed 100.

A lower PCTUSED
« Usually keeps blocks less full than a higher PCTUSED

« Reduces processing costs incurred during UPDATEand DELETEstatements for
moving a block to the free list when the block has fallen below that percentage
of usage

« Increases the unused space in a database

A higher PCTUSED

« Usually keeps blocks fuller than a lower PCTUSED
« Improves space efficiency

« Increases processing cost during INSERTs and UPDATES

Choosing Associated PCTUSED and PCTFREE Values

If you decide not to use the default values for PCTFREEand PCTUSEDthen use the
following guidelines.

« The sum of PCTFREEand PCTUSEDNust be equal to or less than 100.

« If the sum is less than 100, then the ideal compromise of space utilization and
170 performance is a sum of PCTFREEand PCTUSEDhat differs from 100 by
the percentage of space in the available block that an average row occupies. For
example, assume that the data block size is 2048 bytes, minus 100 bytes of
overhead, leaving 1948 bytes available for data. If an average row requires 195

2-6 Application Developer's Guide - Fundamentals

Managing Tables

bytes, or 10% of 1948, then an appropriate combination of PCTUSEand
PCTFRERhat sums to 90% would make the best use of database space.

« If the sum equals 100, then Oracle attempts to keep no more than PCTFREHTee
space, and the processing costs are highest.

« Fixed block overhead is not included in the computation of PCTUSEDr
PCTFREE

« The smaller the difference between 100 and the sum of PCTFREEand PCTUSED
(as in PCTUSEDf 75, PCTFREEOf 20), the more efficient space usage is at some
performance cost.

Examples of Choosing PCTFREE and PCTUSED Values

The following examples illustrate correctly specifying values for PCTFREEand
PCTUSEDN given scenarios.

Examplel

Scenario: Common activity includes UPDATEstatements that increase the size
of the rows. Performance is important.

Settings: PCTFREE= 20
PCTUSED- 40

Explanation: PCTFREHs set to 20 to allow enough room for rows that increase in

size as a result of updates. PCTUSED S set to 40 so that less
processing is done during high update activity, thus improving
performance.

Managing Schema Objects 2-7

Managing Tables

Example2

Scenario:

Settings:

Explanation:

Most activity includes INSERT and DELETEstatements, and UPDATE
statements that do not increase the size of affected rows.
Performance is important.

PCTFREE=5
PCTUSED- 60

PCTFRESHSs set to 5 because most UPDATEstatements do not increase
row sizes. PCTUSEDs set to 60 so that space freed by DELETE
statements is used relatively soon, yet the amount of processing is
minimized.

Example3

Scenario:

Settings:

Explanation:

The table is very large; therefore, storage is a primary concern. Most
activity includes read-only transactions; therefore, query
performance is important.

PCTFREE=5
PCTUSED- 90

PCTFRESHSs set to 5, because UPDATEstatements are rarely issued.
PCTUSEDSs set to 90, so that more space per block is used to store
table data. This setting for PCTUSEDreduces the number of data
blocks required to store the table’s data and decreases the average
number of data blocks to scan for queries, thereby increasing the
performance of queries.

Privileges Required to Create a Table

To create a new table in your schema, you must have the CREATE TABLEystem
privilege. To create a table in another user’s schema, you must have the CREATE
ANY TABLEsystem privilege. Additionally, the owner of the table must have a quota
for the tablespace that contains the table, or the UNLIMITED TABLESPACEYystem

privilege.

2-8 Application Developer's Guide - Fundamentals

Managing Tables

Altering Tables
Alter a table in an Oracle database for any of the following reasons:
« Toadd one or more new columns to the table
« Toadd one or more integrity constraints to a table

« To modify an existing column’s definition (datatype, length, default value, and
NOT NULLintegrity constraint)

« To modify data block space usage parameters (PCTFREEPCTUSED
« To modify transaction entry settings (INITRANS, MAXTRANS

« To modify storage parameters (NEXT PCTINCREASEetc.)

« Toenable or disable integrity constraints associated with the table

« Todrop integrity constraints associated with the table

When altering the column definitions of a table, you can only increase the length of
an existing column, unless the table has no records. You can also decrease the length
of a column in an empty table. For columns of datatype CHAR increasing the length
of a column might be a time consuming operation that requires substantial
additional storage, especially if the table contains many rows. This is because the
CHARvalue in each row must be blank-padded to satisfy the new column length.

If you change the datatype (for example, from VARCHAR20 CHAR, then the data in
the column does not change. However, the length of new CHARcolumns might
change, due to blank-padding requirements.

Use the SQL command ALTER TABLEo alter a table. For example:

ALTER TABLE Emp_tab
PCTFREE 30
PCTUSED 60;

Altering a table has the following implications:

« Ifanew column is added to a table, then the column is initially null. You can
add a column with a NOT NULLconstraint to a table only if the table does not
contain any rows.

« Ifaview or PL/SQL program unit depends on a base table, then the alteration
of the base table might affect the dependent object, and always invalidates the
dependent object.

Managing Schema Objects 2-9

Managing Tables

Privileges Required to Alter a Table

To alter a table, the table must be contained in your schema, or you must have
either the ALTERobject privilege for the table or the ALTER ANY TABLEystem
privilege.

Dropping Tables

Use the SQL command DROP TABLEo drop a table. For example, the following
statement drops the EMP_TARable:

DROP TABLE Emp_tab;
If the table that you are dropping contains any primary or unique keys referenced
by foreign keys of other tables, and if you intend to drop the FOREIGN KEY

constraints of the child tables, then include the CASCADBption in the DROP TABLE
command. For example:

DROP TABLE Emp_tab CASCADE CONSTRAINTS;

Dropping a table has the following effects:

« The table definition is removed from the data dictionary. All rows of the table
are then inaccessible.

« Allindexes and triggers associated with the table are dropped.

« Allviews and PL/SQL program units that depend on a dropped table remain,
but become invalid (not usable).

« All synonyms for a dropped table remain, but return an error when used.

« All extents allocated for a non-clustered table that is dropped are returned to
the free space of the tablespace and can be used by any other object requiring
new extents.

« All rows corresponding to a clustered table are deleted from the blocks of the
cluster.

« If the table is a master table for snapshots, then Oracle does not drop the
snapshots, but does drop the snapshot log. The snapshots can still be used, but
they cannot be refreshed unless the table is re-created.

If you want to delete all of the rows of a table, but keep the table definition, then
you should use the TRUNCATE TABLEommand.

2-10 Application Developer's Guide - Fundamentals

Managing Temporary Tables

See Also: Oracle8i Administrator’s Guide.

Privileges Required to Drop a Table

To drop a table, the table must be contained in your schema or you must have the
DROP ANY TABLEystem privilege.

Managing Temporary Tables

A temporary table has a definition or structure that persists like that of a regular
table, but the data it contains exists only for the duration of a transaction or session.
Oracle8i allows you to create temporary tables to hold session-private data. You
specify whether the data is specific to a session or to a transaction.

Here are a few examples of when temporary tables can be useful:

A Web-based airlines reservations application allows you, as a customer, to
create several optional itineraries. As you develop each itinerary, the
application places the data in a row of a single temporary table. As you modify
each itinerary, the application updates that row accordingly. When you
ultimately decide which itinerary you want to use, the application moves the
row for that itinerary to a persistent table.

During your session, the data you enter is private. When you end your session,
the optional itineraries you developed are dropped.

Several sales agents for a large bookseller use a single temporary table
concurrently while taking customer orders over the phone. To enter and modify
customer orders, each agent accesses the table in a session that is unavailable to
the other agents. When the agent closes a session, the data from that session is
automatically dropped, but the table structure persists for the other agents to
use.

An administrator uses temporary tables to improve performance when running
an otherwise complex and expensive query. To do this, the administrator caches
the values from a more complex query in temporary tables, then runs SQL
statements, such as joins, against those temporary tables. For a thorough
explanation of how this can be done, see "Example 2: Using Temporary Tables
to Improve Performance” on page 2-13.

Managing Schema Objects 2-11

Managing Temporary Tables

Creating Temporary Tables

You create a temporary table by using special ANSI keywords. You specify the data
as session-specific by using the ON COMMIT PRESERVE RQABvords. You specify
the data as transaction-specific by using the ON COMMIT DELETE ROW&ywords.

Example 2-1 Creating a Session-Specific Temporary Table

CREATE GLOBAL TEMPORARY TABLE ...
[ON COMMIT PRESERVE ROWS]

Example 2-2 Creating a Transaction-Specific Temporary Table

CREATE GLOBAL TEMPORARY TABLE ...
[ON COMMIT DELETE ROWS]

Using Temporary Tables
You can create indexes on temporary tables as you would on permanent tables.

For a session-specific temporary table, a session gets bound to the temporary table
with the first insert in the table in the session. This binding goes away at the end of
the session or by issuing a TRUNCATf the table in the session.

For a transaction-specific temporary table, a session gets bound to the temporary
table with the first insert in the table in the transaction. The binding goes away at
the end of the transaction.

DDL operations (except TRUNCATIEare allowed on an existing temporary table
only if no session is currently bound to that temporary table.

Unlike permanent tables, temporary tables and their indexes do not automatically
allocate a segment when they are created. Instead, segments are allocated when the
first INSERT (or CREATE TABLE AS SELEQTs performed. This means that if a
SELECT UPDATEor DELETEis performed before the first INSERT, the table
appears to be empty.

Temporary segments are deallocated at the end of the transaction for
transaction-specific temporary tables and at the end of the session for
session-specific temporary tables.

If you rollback a transaction, the data you entered is lost, although the table
definition persists.

You cannot create a table that is simultaneously both transaction- and
session-specific.

2-12 Application Developer's Guide - Fundamentals

Managing Temporary Tables

A transaction-specific temporary table allows only one transaction at a time. If there
are several autonomous transactions in a single transaction scope, each autonomous
transaction can use the table only as soon as the previous one commits.

Because the data in a temporary table is, by definition, temporary, backup and
recovery of a temporary table’s data is not available in the event of a system failure.
To prepare for such a failure, you should develop alternative methods for
preserving temporary table data.

Examples: Using Temporary Tables

Example 1: A Session-specific Temporary Table

The following statement creates a session-specific temporary table, FLIGHT _
SCHEDULFfor use in an automated airline reservation scheduling system. Each
client has its own session and can store temporary schedules. The temporary
schedules are deleted at the end of the session.

CREATE GLOBAL TEMPORARY TABLE fight _schedule (
startdate DATE,
enddate DATE,
cost NUMBER)

ON COMMIT PRESERVE ROWS;

Example 2: Using Temporary Tables to Improve Performance

You can use temporary tables to improve performance when you run complex
gueries. Running multiple such queries is relatively slow because the tables are
accessed multiple times for each returned row. It is faster to cache the values from a
complex query in a temporary table, then run the queries against the temporary
table.

For example, even with a view like this defined to simplify further queries, the
gueries against the view may be slow because the contents of the view are
recalculated each time:

CREATE OR REPLACE VIEW Profie_values_view AS
SELECT d.Profile_option_name, d.Profile_option_id, Profile_option_value,
u.User_name, Level id, Level code
FROM Profile_definitions d, Profile_values v, Profile_usersu
WHERE d.Profile_option_id =v.Profile_option_id
AND ((Level code ='USER' AND Level id=U.User_id) OR
(Level code ='DEPARTMENT AND Level id = U.Department id) OR
(Level_code="SITE))

Managing Schema Objects 2-13

Managing Temporary Tables

AND NOT EXISTS (SELECT 1 FROM PROFILE_VALUES P
WHERE P.PROFILE_OPTION_ID =V.PROFILE_OPTION_ID
AND ((Level_code ="USER AND
level id=u.User_id) OR
(Level_code ='DEPARTMENT AND
level_id =u.Department_id) OR
(Level code ="SITE))
AND INSTR(USERDEPARTMENTSITE, v.Level_code) >
INSTR(USERDEPARTMENTSITE, p.Level code));

A temporary table allows us to run the computation once, and cache the result in
later SQL queries and joins:

CREATE GLOBAL TEMPORARY TABLE Profile_values_temp

(
Profile_option_name VARCHAR(60) NOT NULL,
Profle_option id NUMBER(®4) NOT NULL,
Profile_option value VARCHAR2(20) NOT NULL,
Level code VARCHAR2(10) ,
Level id NUMBER(4) ,
CONSTRAINT Profile_values_temp_pk

PRIMARY KEY (Profile_option _id)
) ON COMMIT PRESERVE ROWS ORGANIZATION INDEX;

INSERT INTO Profile_values_temp
(Profile_option_name, Profile_option_id, Profile_option_value,
Level code, Level id)
SELECT Profile_option_name, Profile_option_id, Profile_option_value,
Level code, Level id
FROM Profile_values view,
COMMIT;

Now the temporary table can be used to speed up queries, and the results cached in
the temporary table are freed automatically by the database when the session ends.

2-14 Application Developer's Guide - Fundamentals

Managing Views

Managing Views

A view is a logical representation of another table or combination of tables. A view
derives its data from the tables on which it is based. These tables are called base
tables. Base tables might in turn be actual tables or might be views themselves.

All operations performed on a view actually affect the base table of the view. You
can use views in almost the same way as tables. You can query, update, insert into,
and delete from views, just as you can standard tables.

Views can provide a different representation (such as subsets or supersets) of the
data that resides within other tables and views. Views are very powerful because
they allow you to tailor the presentation of data to different types of users.

The following sections explain how to create, replace, and drop views using SQL
commands.

Creating Views

Use the SQL command CREATE VIEWo create a view. For example, the following
statement creates a view on a subset of data in the EMP_TARable:

CREATE VIEW Sdles_staff AS
SELECT Empno, Ename, Deptno
FROM Emp_tab
WHERE Deptno =10
WITH CHECK OPTION CONSTRAINT Sales_staff_cnst;

The object names are resolved when the view is created or when the program
containing the SQL is compiled, relative to the schema of the view owner.

You can define views with any query that references tables, snapshots, or other
views; however, the query that defines a view cannot contain the ORDER BY¥r FOR
UPDATEclauses.

The query that defines the SALES_STAFFview references only rows in department
10. Furthermore, WITH CHECK OPTIORfeates the view with the constraint that
INSERT and UPDATEstatements issued against the view are not allowed to create
or result in rows that the view cannot select.

Considering the example above, the following INSERT statement successfully
inserts a row into the EMP_TARable via the SALES_STAFFview:

INSERT INTO Sales_staff VALUES (7584, 'OSTER;, 10);

Managing Schema Objects 2-15

Managing Views

However, the following INSERT statement is rolled back and returns an error
because it attempts to insert a row for department number 30, which could not be
selected using the SALES_STAFFview:

INSERT INTO Sales_staff VALUES (7591, WILLIAMS, 30);

The following statement creates a view that joins data from the Emp_tab and
Dept_tab tables:

CREATE VIEW Divisionl_staff AS
SELECT Ename, Empno, Job, Dname
FROM Emp_tab, Dept_tab
WHERE Emp_tab.Deptno IN (10, 30)
AND Emp_tab.Deptno =Dept_tab.Deptno;

The Divisionl_staff view is defined by a query that joins information from the
Emp_tab and Dept_tab tables. The WITH CHECK OPTIOM not specified in the
CREATE VIEWtatement because rows cannot be inserted into or updated in a view
defined with a query that contains a join that uses the WITH CHECK OPTION

Expansion of Defining Queries at View Creation Time

In accordance with the ANSI/ZISO standard, Oracle expands any wildcard in a
top-level view query into a column list when a view is created and stores the
resulting query in the data dictionary; any subqueries are left intact. The column
names in an expanded column list are enclosed in quote marks to account for the
possibility that the columns of the base object were originally entered with quotes
and require them for the query to be syntactically correct.

As an example, assume that the Dept_view view is created as follows:
CREATE VIEW Dept_view AS SELECT * FROM scott.Dept_tab;

Oracle stores the defining query of the Dept_view view as

SELECT "DEPTNO", "DNAME", "LOC" FROM scottDept_tab;

Views created with errors do not have wildcards expanded. However, if the view is
eventually compiled without errors, then wildcards in the defining query are
expanded.

Creating Views with Errors

A view can be created even if the defining query of the view cannot be executed, as
long as the CREATE VIEWommand has no syntax errors. We call such a view a view

2-16 Application Developer's Guide - Fundamentals

Managing Views

with errors. For example, if a view refers to a non-existent table or an invalid column
of an existing table, or if the owner of the view does not have the required
privileges, then the view can still be created and entered into the data dictionary.

You can only create a view with errors by using the FORCEoption of the CREATE
VIEW command:

CREATEFORCEVIEWAS ..,

When a view is created with errors, Oracle returns a message and leaves the status
of the view as INVALID . If conditions later change so that the query of an invalid
view can be executed, then the view can be recompiled and become valid. Oracle
dynamically compiles the invalid view if you attempt to use it.

Privileges Required to Create a View
To create a view, you must have been granted the following privileges:

=« You must have the CREATE VIEWystem privilege to create a view in your
schema, or the CREATE ANY VIEWYstem privilege to create a view in another
user’s schema. These privileges can be acquired explicitly or via a role.

« The owner of the view must be explicitly granted the necessary privileges to
access all objects referenced within the definition of the view; the owner cannot
obtain the required privileges through roles. Also, the functionality of the view
is dependent on the privileges of the view’s owner. For example, if you (the
view owner) are granted only the INSERT privilege for Scott’s EMP_TARable,
then you can create a view on his EMP_TARable, but you can only use this
view to insert new rows into the EMP_TARable.

« If the view owner intends to grant access to the view to other users, then the
owner must receive the object privileges to the base objects with the GRANT
OPTIONOor the system privileges with the ADMIN OPTIONIf not, then the view
owner has insufficient privileges to grant access to the view to other users.

Replacing Views

To alter the definition of a view, you must replace the view using one of the
following methods:

« Aview can be dropped and then re-created. When a view is dropped, all grants
of corresponding view privileges are revoked from roles and users. After the
view is re-created, necessary privileges must be regranted.

Managing Schema Objects 2-17

Managing Views

« Aview can be replaced by redefining it with a CREATE VIEVEtatement that
contains the OR REPLACHEption. This option replaces the current definition of a
view, but preserves the present security authorizations.

For example, assume that you create the SALES_STAFFview, as given in a
previous example. You also grant several object privileges to roles and other
users. However, now you realize that you must redefine the SALES _STAFF
view to correct the department number specified in the WHER[Elause of the
defining query, because it should have been 30. To preserve the grants of object
privileges that you have made, you can replace the current version of the
SALES_STAFFview with the following statement:

CREATE OR REPLACE VIEW Sales_staff AS
SELECT Empno, Ename, Deptno
FROMEmp_tab
WHERE Deptno =30
WITH CHECK OPTION CONSTRAINT Sales_staff cnst;

Replacing a view has the following effects:

« Replacing a view replaces the view’s definition in the data dictionary. All
underlying objects referenced by the view are not affected.

« If previously defined but not included in the new view definition, then the
constraint associated with the WITH CHECK OPTIOFbr a view’s definition is
dropped.

« Allviews and PL/SQL program units dependent on a replaced view become
invalid.

Privileges Required to Replace a View

To replace a view, you must have all of the privileges necessary to drop the view, as
well as all of those required to create the view.

Using Views

Views can be queried in the same manner as tables. For example, to query the
Divisionl_staff view, enter a valid SELECTstatement that references the view:

SELECT * FROM Divisionl._staff;

ENAME EMPNO JOB DNAME

CLARK 7782 MANAGER ACCOUNTING
KING 7839 PRESIDENT ACCOUNTING

2-18 Application Developer's Guide - Fundamentals

Managing Views

MILLER 7934 CLERK ACCOUNTING
ALLEN 7499 SALESMAN SALES
WARD 7521 SALESMAN SALES
JAMES 7900 CLERK SALES
TURNER 7844 SALESMAN SALES
MARTIN 7654 SALESMAN SALES
BLAKE 7698 MANAGER SALES

With some restrictions, rows can be inserted into, updated in, or deleted from a base
table using a view. The following statement inserts a new row into the EMP_TAB
table using the SALES_STAFFview:

INSERT INTO Sales_staff
VALUES (7954, 'OSTER), 30);

Restrictions on DML operations for views use the following criteria in the order
listed:

1. Ifaview is defined by a query that contains SETor DISTINCT operators, a
GROUP BYlause, or a group function, then rows cannot be inserted into,
updated in, or deleted from the base tables using the view.

2. Ifaview is defined with WITH CHECK OPTIONhen a row cannot be inserted
into, or updated in, the base table (using the view), if the view cannot select the
row from the base table.

3. IfaNOT NULLcolumn that does not have a DEFAUL Tclause is omitted from the
view, then a row cannot be inserted into the base table using the view.

4. If the view was created by using an expression, such as DECODEleptno, 10,
"SALES, ...), then rows cannot be inserted into or updated in the base table
using the view.

The constraint created by WITH CHECK OPTIONf the SALES_STAFFview only
allows rows that have a department number of 10 to be inserted into, or updated in,
the EMP_TARable. Alternatively, assume that the SALES _STAFFview is defined by
the following statement (that is, excluding the DEPTNQolumn):

CREATE VIEW Sales_staff AS
SELECT Empno, Ename
FROM Emp_tab
WHERE Deptno =10
WITH CHECK OPTION CONSTRAINT Sales_staff_cnst;

Considering this view definition, you can update the EMPN®@r ENAMHields of
existing records, but you cannot insert rows into the EMP_TABable via the SALES _

Managing Schema Objects 2-19

Managing Views

STAFFview because the view does not let you alter the DEPTNdield. If you had
defined a DEFAULTvalue of 10 on the DEPTNGield, then you could perform
inserts.

Referencing Invalid Views ~ When a user attempts to reference an invalid view, Oracle
returns an error message to the user:

ORA-04063: view’ view_name ' has errors
This error message is returned when a view exists but is unusable due to errors in
its query (whether it had errors when originally created or it was created

successfully but became unusable later because underlying objects were altered or
dropped).

Privileges Required to Use a View

To issue a query or an INSERT, UPDATE, or DELETEstatement against a view, you
must have the SELECT, INSERT, UPDATE, or DELETEObject privilege for the
view, respectively, either explicitly or via a role.

Dropping Views
Use the SQL command DROP VIEWo drop a view. For example:
DROP VIEW Sales_staff,

Privileges Required to Drop a View

You can drop any view contained in your schema. To drop a view in another user’s
schema, you must have the DROP ANY VIEWYstem privilege.

2-20 Application Developer's Guide - Fundamentals

Modifying a Join View

Modifying a Join View

The Oracle Server allows you, with some restrictions, to modify views that involve
joins. Consider the following simple view:

CREATE VIEW Emp_view AS

SELECT Ename, Empno, deptno FROM Emp _tab;
This view does not involve a join operation. If you issue the SQL statement:
UPDATE Emp_view SET Ename ='CAESAR WHERE Empno = 7839;
then the EMP_TABbase table that underlies the view changes, and employee 7839’s
name changes from KING to CAESARN the EMP_TARable.
However, if you create a view that involves a join operation, such as:

CREATE VIEW Emp_dept view AS
SELECT e.Empno, e.Ename, e.Deptno, e.Sal, d.Dname, d.Loc
FROM Emp_tabe, Dept tabd #JOIN operation */
WHERE e.Deptno =d.Deptno
ANDd.Loc IN (DALLAS','NEW YORK’, BOSTON));

then there are restrictions on modifying either the EMP_TABor the DEPT_TABbase
table through this view, for example, using a statement such as:

UPDATE Emp_dept view SET Ename ="JOHNSON’
WHERE Ename ="SMITH,

A modifiable join view is a view that contains more than one table in the top-level
FROMIlause of the SELECTstatement, and that does not contain any of the
following:

« DISTINCT operator

« Aggregate functions: AVG COUNJTGLB MAXMIN, STDDEYSUMor VARIANCE
« Set operations: UNION UNION ALL INTERSECT MINUS

« GROUP BYr HAVINGclauses

« START WITHor CONNECT B¥auses

« ROWNUpseudocolumn

A further restriction on which join views are modifiable is that if a view is a join on
other nested views, then the other nested views must be mergeable into the top
level view.

Managing Schema Objects 2-21

Modifying a Join View

See Also: See Oracle8i Concepts for more information about
mergeable views.

Example Tables

The examples in this section use the EMP_TABand DEPT_TABtables. However, the
examples work only if you explicitly define the primary and foreign keys in these
tables, or define unique indexes. Here are the appropriately constrained table
definitions for EMP_TABand DEPT_TAB

CREATE TABLE Dept tab (
Depno NUMBER(®) PRIMARY KEY,
Dname VARCHAR2(14),
Loc VARCHAR2(13))

CREATE TABLE Emp_tab (
Empno NUMBER(4) PRIMARY KEY,
Ename VARCHAR2(10),
Job varchar2(9),
Mgr NUMBER(@),
Hiredate DATE,
Sal NUMBER(7,2),
Comm NUMBER(7,2),
Deptno NUMBER(2),
FOREIGN KEY (Deptno) REFERENCES Dept_tab(Deptno));

You could also omit the primary and foreign key constraints listed above, and create
a UNIQUE INDEXon DEPT_TAB (DEPTNO}o make the following examples work.

Key-Preserved Tables

The concept of a key-preserved table is fundamental to understanding the restrictions
on modifying join views. A table is key preserved if every key of the table can also
be a key of the result of the join. So, a key-preserved table has its keys preserved
through a join.

2-22 Application Developer's Guide - Fundamentals

Modifying a Join View

Note:

« Itis not necessary that the key or keys of a table be selected for
it to be key preserved. It is sufficient that if the key or keys were
selected, then they would also be key(s) of the result of the join.

« The key-preserving property of a table does not depend on the
actual data in the table. It is, rather, a property of its schema
and not of the data in the table. For example, if in the EMP_TAB
table there was at most one employee in each department, then
DEPT_TAB.DEPTNQvould be unique in the result of a join of
EMP_TABand DEPT_TABbut DEPT_TABwould still not be a
key-preserved table.

If you SELECTall rows from EMP_DEPT_VIEWefined in the "Modifying a Join
View" section, then the results are:

EMPNO ENAME DEPTNO DNAME LOC

7782 CLARK 10 ACCOUNTING NEWYORK
7839 KING 10 ACCOUNTING NEW YORK
7934 MILLER 10 ACCOUNTING NEW YORK
7369 SMITH 20 RESEARCH DALLAS
7876 ADAMS 20 RESEARCH DALLAS
7902 FORD 20 RESEARCH DALLAS
7788 SCOTT 20 RESEARCH DALLAS
7566 JONES 20 RESEARCH DALLAS

8 rows selected.

In this view, EMP_TABs a key-preserved table, because EMPNGs a key of the EMP_
TABtable, and also a key of the result of the join. DEPT_TABIs not a key-preserved
table, because although DEPTNGs a key of the DEPT_TABtable, it is not a key of the
join.

Rule for DML Statements on Join Views

Any UPDATEINSERT, or DELETEstatement on a join view can modify only one
underlying base table.

Managing Schema Objects 2-23

Modifying a Join View

UPDATE Statements

The following example shows an UPDATEstatement that successfully modifies the
EMP_DEPT_VIEWiew:

UPDATE Emp_dept view
SET Sal=Sal*1.10
WHERE Deptno = 10;

The following UPDATEstatement would be disallowed on the EMP_DEPT_VIEW
view:

UPDATE Emp_dept view
SET Loc ='BOSTON'
WHERE Ename ="SMITH;;

This statement fails with an ORA-01779 error ("cannot modify a column which
maps to a non key-preserved table"), because it attempts to modify the underlying
DEPT_TABtable, and the DEPT_TABtable is not key preserved in the EMP_DEPT
view.

In general, all modifiable columns of a join view must map to columns of a
key-preserved table. If the view is defined using the WITH CHECK OPTIOblause,
then all join columns and all columns of repeated tables are not modifiable.

So, for example, if the EMP_DEPWView were defined using WITH CHECK OPTION,
then the following UPDATEstatement would fail:

UPDATE Emp_dept view
SET Deptno =10
WHERE Ename = 'SMITH;

The statement fails because it is trying to update a join column.

DELETE Statements

You can delete from a join view provided there is one and only one key-preserved
table in the join.

The following DELETEstatement works on the EMP_DEP WView:

DELETE FROM Emp_dept view
WHERE Ename ="SMITH;

This DELETEstatement on the EMP_DEPWView is legal because it can be translated
to a DELETEoperation on the base EMP_TARable, and because the EMP_TABRable
is the only key-preserved table in the join.

2-24 Application Developer's Guide - Fundamentals

Modifying a Join View

In the following view, a DELETEoperation cannot be performed on the view
because both E1 and E2 are key-preserved tables:;

CREATE VIEW emp_emp AS
SELECT el.Ename, e2.Empno, el.Deptno
FROMEmp _tabel, Emp_tabe2
WHERE el.Empno = e2.Empno;
WHERE el.Empno =e2.Empno;

If a view is defined using the WITH CHECK OPTIOBlause and the key-preserved
table is repeated, then rows cannot be deleted from such a view. For example:

CREATE VIEW Emp_mgr AS
SELECT el.Ename, e2.Ename Mname
FROMEmp_tabel, Emp_tabe2
WHERE el.mgr=e2.Empno
WITH CHECK OPTION,;

No deletion can be performed on this view because the view involves a self-join of
the table that is key preserved.

INSERT Statements

The following INSERT statement on the EMP_DEPView succeeds, because only
one key-preserved base table is being modified (EMP_TAB, and 40 is a valid
DEPTNGN the DEPT_TABtable (thus satisfying the FOREIGN KEMntegrity
constraint on the EMP_TARable).

INSERT INTO Emp_dept (Ename, Empno, Deptno)
VALUES (KURODA, 9010, 40);

The following INSERT statement fails for the same reason: This UPDATEoN the base
EMP_TARable would fail: the FOREIGN KEMntegrity constraint on the EMP_TAB
table is violated.

INSERT INTO Emp_dept (Ename, Empno, Deptno)

VALUES (KURODA', 9010, 77);
The following INSERT statement fails with an ORA-01776 error ("cannot modify
more than one base table through a view").

INSERT INTO Emp_dept (Ename, Empno, Deptno)
VALUES (9010, KURODA',' BOSTON);

Managing Schema Objects 2-25

Modifying a Join View

An INSERT cannot, implicitly or explicitly, refer to columns of a non-key-preserved
table. If the join view is defined using the WITH CHECK OPTIOBlause, then you
cannot perform an INSERT to it.

Using the UPDATABLE_COLUMNS Views

Three views you can use for modifying join views are shown in Table 2-1.

Table 2-1 UPDATABLE_COLUMNS Views

View Name Description

USER_UPDATABLE_COLUMNS Shows all columns in all tables and views in
the user’s schema that are modifiable

DBA_UPDATABLE_COLUMNS Shows all columns in all tables and views in
the DBA schema that are modifiable
ALL_UPDATABLE_VIEWS Shows all columns in all tables and views

that are modifiable

Outer Joins

Views that involve outer joins are modifiable in some cases. For example:

CREATE VIEW Emp_dept 01 AS
SELECT Empno, Ename, e.Deptno, Dname, Loc
FROM Emp_tabe, Dept tabd
WHERE e.Deptno = d.Deptno (+);

The statement:
SELECT * FROM Emp_dept_oj1;

Results in:

EMPNO ENAME DEPTNO DNAME LOC
7369 SMITH 40 OPERATIONS BOSTON
7499 ALLEN 30 SALES CHICAGO

7566 JONES 20 RESEARCH DALLAS
7654 MARTIN 30 SALES CHICAGO
7698 BLAKE 30 SALES CHICAGO

7782 CLARK 10 ACCOUNTING NEW YORK
7788 SCOTT 20 RESEARCH DALLAS
7839 KING 10 ACCOUNTING NEWYORK
7844 TURNER 30 SALES CHICAGO

2-26 Application Developer's Guide - Fundamentals

Modifying a Join View

7876 ADAMS 20 RESEARCH DALLAS
7900 JAMES 30 SALES CHICAGO

7902 FORD 20 RESEARCH DALLAS
7934 MILLER 10 ACCOUNTING NEW YORK
7521 WARD 30 SALES CHICAGO

14 rows selected.

Columns in the base EMP_TARable of EMP_DEPT_OJkre modifiable through the
view, because EMP_TAB:s a key-preserved table in the join.

The following view also contains an outer join:

CREATE VIEW Emp_dept o2 AS

SELECT e.Empno, e Ename, e.Deptno, d.Dname, d.Loc
FROM Emp_tabe, Dept_tabd

WHERE e.Deptno (+) = d.Deptno;

The statement:
SELECT * FROM Emp_dept_oj2;

Results in:
EMPNO ENAME DEPTNO DNAME LOC

7782 CLARK 10 ACCOUNTING NEW YORK
7839 KING 10 ACCOUNTING NEW YORK
7934 MILLER 10 ACCOUNTING NEW YORK
7369 SMITH 20 RESEARCH DALLAS
7876 ADAMS 20 RESEARCH DALLAS
7902 FORD 20 RESEARCH DALLAS
7788 SCOTT 20 RESEARCH DALLAS
7566 JONES 20 RESEARCH DALLAS
7499 ALLEN 30 SALES CHICAGO
7698 BLAKE 30 SALES CHICAGO
7654 MARTIN 30 SALES CHICAGO
7900 JAMES 30 SALES CHICAGO
7844 TURNER 30 SALES CHICAGO
7521 WARD 30 SALES CHICAGO
OPERATIONS BOSTON
15 rows selected.

In this view, EMP_TABs no longer a key-preserved table, because the EMPNO
column in the result of the join can have nulls (the last row in the SELECTabove).
So, UPDATEDELETE and INSERT operations cannot be performed on this view.

Managing Schema Objects 2-27

Modifying a Join View

In the case of views containing an outer join on other nested views, a table is key
preserved if the view or views containing the table are merged into their outer
views, all the way to the top. A view which is being outer-joined is currently
merged only if it is "simple."” For example:

SELECT Col1, Col2, ... FROMT;

The select list of the view has no expressions, and there is no WHERElause.
Consider the following set of views:

CREATEVIEW Emp VAS
SELECT Empno, Ename, Deptno
FROM Emp _tab;
CREATE VIEW Emp_dept 0jLAS
SELECT e*, Loc, d.Dname
FROM Emp_ve, Dept tabd
WHERE e.Deptno =d.Deptno (+);

In these examples, EMP_Vis merged into EMP_DEPT_OJbecause EMP_Vis a
simple view, and so EMP_TABSs a key-preserved table. But if EMP_Vis changed as
follows:

CREATEVIEWEmMp_v 2AS
SELECT Empno, Ename, Deptno
FROMEmp _tab
WHERE Sal > 1000;

Then, because of the presence of the WHER[Elause, EMP_V_2cannot be merged into
EMP_DEPT_0Jland hence EMP_TABs no longer a key-preserved table.

If you are in doubt whether a view is modifiable, then you can SELECTfrom the
view USER_UPDATABLE_COLUMNSsee if it is. For example:

SELECT *FROM USER_UPDATABLE_COLUMNS WHERE TABLE NAME ="EMP_DEPT_VIEW;

This might return:
OWNER TABLE NAME COLUMN_NAM UPD

SCOTT EMP_DEPT_V EMPNO NO

SCOTT EMP_DEPT_V ENAME NO

SCOTT EMP_DEPT V DEPTNO NO
SCOTT EMP_DEPT_V DNAME NO

SCOTT EMP DEPT V LOC NO

5 rows selected.

2-28 Application Developer's Guide - Fundamentals

Managing Sequences

Managing Sequences

The sequence generator generates sequential numbers, which can help to generate
unique primary keys automatically, and to coordinate keys across multiple rows or
tables.

Without sequences, sequential values can only be produced programmatically. A
new primary key value can be obtained by selecting the most recently produced
value and incrementing it. This method requires a lock during the transaction and
causes multiple users to wait for the next value of the primary key; this waiting is
known as serialization. If you have such constructs in your applications, then you
should replace them with access to sequences. Sequences eliminate serialization and
improve the concurrency of your application.

The following sections explain how to create, alter, use, and drop sequences using
SQL commands.

Creating Sequences

Use the SQL command CREATE SEQUENGQE create a sequence. The following
statement creates a sequence used to generate employee numbers for the EMPNO
column of the EMP_TARable:

CREATE SEQUENCE Emp_sequence
INCREMENT BY 1
STARTWITH1
NOMAXVALUE
NOCYCLE
CACHE 10;

Notice that several parameters can be specified to control the function of sequences.
You can use these parameters to indicate whether the sequence is ascending or
descending, the starting point of the sequence, the minimum and maximum values,
and the interval between sequence values. The NOCYCLBption indicates that the
sequence cannot generate more values after reaching its maximum or minimum
value.

The CACHEBEoption of the CREATE SEQUENGEmMmand pre-allocates a set of
sequence numbers and keeps them in memory so that they can be accessed faster.
When the last of the sequence numbers in the cache have been used, another set of
numbers is read into the cache.

Managing Schema Objects 2-29

Managing Sequences

See Also: For additional implications for caching sequence
numbers when using the Oracle Parallel Server, see Oracle8i Parallel
Server Documentation Set: Oracle8i Parallel Server Concepts; Oracle8i
Parallel Server Setup and Configuration Guide; Oracle8i Parallel Server
Administration, Deployment, and Performance.

General information about caching sequence numbers is included
in "Caching Sequence Numbers" on page 2-33.

Privileges Required to Create a Sequence

To create a sequence in your schema, you must have the CREATE SEQUENGEstem
privilege. To create a sequence in another user’s schema, you must have the
CREATE ANY SEQUENG@HVvilege.

Altering Sequences

You can change any of the parameters that define how corresponding sequence
numbers are generated; however, you cannot alter a sequence to change the starting
number of a sequence. To do this, you must drop and re-create the sequence.

Use the SQL command ALTER SEQUENCIS alter a sequence. For example:

ALTER SEQUENCE Emp_sequence
INCREMENT BY 10

MAXVALUE 10000

CYCLE

CACHE 20;

Privileges Required to Alter a Sequence

To alter a sequence, your schema must contain the sequence, or you must have the
ALTER ANY SEQUENGIHstem privilege.

Using Sequences

Once a sequence is defined, it can be accessed and incremented by multiple users
with no waiting. Oracle does not wait for a transaction that has incremented a
sequence to complete before that sequence can be incremented again.

The examples outlined in the following sections show how sequences can be used
in master/detail table relationships. Assume an order entry system is partially
comprised of two tables, ORDERS_TABmaster table) and LINE_ITEMS_TAB (detail

2-30 Application Developer's Guide - Fundamentals

Managing Sequences

table), that hold information about customer orders. A sequence named ORDER _
SEQis defined by the following statement:

CREATE SEQUENCE Order_seq
STARTWITH1
INCREMENT BY 1
NOMAXVALUE
NOCYCLE
CACHE 20;

Referencing a Sequence

A sequence is referenced in SQL statements with the NEXTVALand CURRVAL
pseudocolumns; each new sequence number is generated by a reference to the
sequence’s pseudocolumn NEXTVAL while the current sequence number can be
repeatedly referenced using the pseudo-column CURRVAL

NEXTVALand CURRVAlIare not reserved words or keywords and can be used as
pseudo-column names in SQL statements such as SELECT, INSERTSs, or UPDATE.

Generating Sequence Numbers with NEXTVAL To generate and use a sequence number,
reference seq_name.NEXTVAL For example, assume a customer places an order. The
sequence number can be referenced in a values list. For example:

INSERT INTO Orders_tab (Ordemo, Custno)
VALUES (Order_seq.NEXTVAL, 1032);

Or, the sequence number can be referenced in the SET clause of an UPDATE
statement. For example;

UPDATE Orders_tab
SET Ordemo = Order_seq.NEXTVAL
WHERE Ordemo =10112;

The sequence number can also be referenced outermost SELECTof a query or
subquery. For example:

SELECT Order_seq.NEXTVAL FROM dual;

As defined, the first reference to ORDER_SEQ.NEXTVAteturns the value 1. Each
subsequent statement that references ORDER_SEQ.NEXTVAgenerates the next
sequence number (2, 3, 4,. . .). The pseudo-column NEXTVALcan be used to generate
as many new sequence numbers as necessary. However, only a single sequence
number can be generated per row. In other words, if NEXTVALIis referenced more

Managing Schema Objects 2-31

Managing Sequences

than once in a single statement, then the first reference generates the next number,
and all subsequent references in the statement return the same number.

Once a sequence number is generated, the sequence number is available only to the
session that generated the number. Independent of transactions committing or
rolling back, other users referencing ORDER_SEQ.NEXTVAdbtain unique values. If
two users are accessing the same sequence concurrently, then the sequence numbers
each user receives might have gaps because sequence numbers are also being
generated by the other user.

Using Sequence Numbers with CURRVAL To use or refer to the current sequence value
of your session, reference seq_name.CURRVALCURRVAIcan only be used if seq_
name.NEXTVALhas been referenced in the current user session (in the current or a
previous transaction). CURRVAIcan be referenced as many times as necessary,
including multiple times within the same statement. The next sequence number is
not generated until NEXTVALIs referenced. Continuing with the previous example,
you would finish placing the customer’s order by inserting the line items for the
order:

INSERT INTO Line_items_tab (Ordemo, Partno, Quantity)
VALUES (Order_seq.CURRVAL, 20321, 3);

INSERT INTO Line_items_tab (Ordemo, Partno, Quantity)
VALUES (Order_seq.CURRVAL, 29374, 1);

Assuming the INSERT statement given in the previous section generated a new
sequence number of 347, both rows inserted by the statements in this section insert
rows with order numbers of 347.

Uses and Restrictions of NEXTVAL and CURRVAL ~ CURRVAland NEXTVALcan be used
in the following places:

« VALUESclause of INSERT statements

« The SELECTIist of a SELECTstatement

« The SETclause of an UPDATEstatement

CURRVAland NEXTVALcannot be used in these places:

« Asubquery

« Aview’s query or snapshot’s query

« A SELECTstatement with the DISTINCT operator

« A SELECTstatement with a GROUP B¥r ORDER B¥lause

2-32 Application Developer's Guide - Fundamentals

Managing Sequences

« A SELECTstatement that is combined with another SELECTstatement with the
UNION, INTERSECT, or MINUSset operator

« The WHERElause of a SELECTstatement
« DEFAULTvalue of a column in a CREATE TABLBr ALTER TABLEstatement
« The condition of a CHECKconstraint

Caching Sequence Numbers

Sequence numbers can be kept in the sequence cache in the System Global Area
(SGA). Sequence numbers can be accessed more quickly in the sequence cache than
they can be read from disk.

The sequence cache consists of entries. Each entry can hold many sequence
numbers for a single sequence.

Follow these guidelines for fast access to all sequence numbers:

« Be sure the sequence cache can hold all the sequences used concurrently by
your applications.

« Increase the number of values for each sequence held in the sequence cache.

The Number of Entries in the Sequence Cache ~ When an application accesses a sequence
in the sequence cache, the sequence numbers are read quickly. However, if an
application accesses a sequence that is not in the cache, then the sequence must be
read from disk to the cache before the sequence numbers are used.

If your applications use many sequences concurrently, then your sequence cache
might not be large enough to hold all the sequences. In this case, access to sequence
numbers might often require disk reads. For fast access to all sequences, be sure
your cache has enough entries to hold all the sequences used concurrently by your
applications.

The number of entries in the sequence cache is determined by the initialization
parameter SEQUENCE_CACHE_ENTRIEEhe default value for this parameter is 10
entries. Oracle creates and uses sequences internally for auditing, grants of system
privileges, grants of object privileges, profiles, debugging stored procedures, and
labels. Be sure your sequence cache has enough entries to hold these sequences as
well as sequences used by your applications.

If the value for your SEQUENCE_CACHE_ENTRIp&rameter is too low, then it is
possible to skip sequence values. For example, assume that this parameter is set to
4, and that you currently have four cached sequences. If you create a fifth sequence,

Managing Schema Objects 2-33

Managing Sequences

then it will replace the least recently used sequence in the cache. All of the
remaining values in this displaced sequence are lost. In other words, if the displaced
sequence originally held 10 cached sequence values, and only one had been used,
then nine would be lost when the sequence was displaced.

The Number of Values in Each Sequence Cache Entry ~ When a sequence is read into the
sequence cache, sequence values are generated and stored in a cache entry. These
values can then be accessed quickly. The number of sequence values stored in the
cache is determined by the CACHEparameter in the CREATE SEQUENCGEtement.
The default value for this parameter is 20.

This CREATE SEQUENGEtement creates the SEQ2sequence so that 50 values of
the sequence are stored in the SEQUENCEache:

CREATE SEQUENCE Seq2
CACHESO ;

The first 50 values of SEQ2can then be read from the cache. When the 51st value is
accessed, the next 50 values will be read from disk.

Choosing a high value for CACHEallows you to access more successive sequence
numbers with fewer reads from disk to the sequence cache. However, if there is an
instance failure, then all sequence values in the cache are lost. Cached sequence
numbers also could be skipped after an export and import if transactions continue
to access the sequence numbers while the export is running.

If you use the NOCACHEBption in the CREATE SEQUENGExtement, then the values
of the sequence are not stored in the sequence cache. In this case, every access to the
sequence requires a disk read. Such disk reads slow access to the sequence. This
CREATE SEQUENGEatement creates the SEQ3sequence so that its values are never
stored in the cache:

CREATE SEQUENCE Seq3
NOCACHE;

Privileges Required to Use a Sequence

To use a sequence, your schema must contain the sequence or you must have been
granted the SELECTobiject privilege for another user’s sequence.

Dropping Sequences

To drop a sequence, use the SQL command DROP SEQUENCHEor example, the
following statement drops the ORDER_SE®equence:

2-34 Application Developer's Guide - Fundamentals

Managing Synonyms

DROP SEQUENCE Order_seq;

When you drop a sequence, its definition is removed from the data dictionary. Any
synonyms for the sequence remain, but return an error when referenced.

Privileges Required to Drop a Sequence

You can drop any sequence in your schema. To drop a sequence in another schema,
you must have the DROP ANY SEQUEN&tem privilege.

Managing Synonyms

A synonym is an alias for a table, view, snapshot, sequence, procedure, function, or
package. The following sections explain how to create, use, and drop synonyms
using SQL commands.

Creating Synonyms

Use the SQL command CREATE SYNONY b create a synonym. The following
statement creates a public synonym named PUBLIC_EMPon the EMP_TARable
contained in the schema of JWARD

CREATE PUBLIC SYNONYM Public_emp FOR jward. Emp_tab;

Privileges Required to Create a Synonym

You must have the CREATE SYNONYBystem privilege to create a private synonym
in your schema, or the CREATE ANY SYNON¥#tem privilege to create a private
synonym in another user’s schema. To create a public synonym, you must have the
CREATE PUBLIC SYNONYdystem privilege.

Using Synonyms

A synonym can be referenced in a DML statement the same way that the
underlying object of the synonym can be referenced. For example, if a synonym
named EMP_TARBrefers to a table or view, then the following statement is valid:

INSERT INTO Emp_tab (Empno, Ename, Job)
VALUES (Emp_sequence NEXTVAL, 'SMITH', 'CLERK);

If the synonym named FIRE_EMPrefers to a stand-alone procedure or package
procedure, then you could execute it in SQL*Plus or Enterprise Manager with the
command

Managing Schema Objects 2-35

Managing Synonyms

EXECUTE Fire_emp(7344);

You can also use synonyms for GRANT and REVOKE statements, but not with
other DML statements.

Privileges Required to Use a Synonym

You can successfully use any private synonym contained in your schema or any
public synonym, assuming that you have the necessary privileges to access the
underlying object, either explicitly, from an enabled role, or from PUBLIC. You can
also reference any private synonym contained in another schema if you have been
granted the necessary object privileges for the private synonym. You can only
reference another user’s synonym using the object privileges that you have been
granted. For example, if you have the SELECTprivilege for the IWARIEMP_TAB
synonym, then you can query the IWARLEMP_TABsynonym, but you cannot insert
rows using the synonym for JIWARLEMP_TAB

Dropping Synonyms

To drop a synonym, use the SQL command DROP SYNONYMpo drop a private
synonym, omit the PUBLIC keyword; to drop a public synonym, include the
PUBLIC keyword. The following statement drops the private synonym named
EMP_TAB

DROP SYNONYM Emp_tab;

The following statement drops the public synonym named PUBLIC_EMP
DROP PUBLIC SYNONYM Public_emp;

When you drop a synonym, its definition is removed from the data dictionary. All
objects that reference a dropped synonym remain (for example, views and
procedures) but become invalid.

Privileges Required to Drop a Synonym

You can drop any private synonym in your own schema. To drop a private
synonym in another user’s schema, you must have the DROP ANY SYNON¥ytem
privilege. To drop a public synonym, you must have the DROP PUBLIC SYNONYM
system privilege.

2-36 Application Developer's Guide - Fundamentals

Creating Multiple Tables and Views in One Operation

Creating Multiple Tables and Views in One Operation

You can create several tables and views and grant privileges in one operation using
the SQL command CREATE SCHEMAhe CREATE SCHEMAMmMand is useful if
you want to guarantee the creation of several tables and views and grants in one
operation; if an individual table or view creation fails or a grant fails, then the entire
statement is rolled back, and none of the objects are created or the privileges
granted.

For example, the following statement creates two tables and a view that joins data
from the two tables:

CREATE SCHEMA AUTHORIZATION scott
CREATE VIEW Sales_staff AS
SELECT Empno, Ename, Sal, Comm
FROM Emp_tab
WHERE Deptno =30 WITH CHECK OPTION CONSTRAINT
Sales_staff cnst

CREATE TABLE Dept_tab (
Deptno NUMBER(3) PRIMARY KEY,
Dname VARCHAR2(15),
Lloc VARCHAR2(25)

CREATE TABLE Emp_tab (
Empno NUMBER(5) PRIMARY KEY,
Ename VARCHAR2(15) NOT NULL,
Job VARCHAR2(10),
Mgr NUMBER(),
Hiredate DATE DEFAULT (sysdate),
Sal NUMBER(7,2),
Comm NUMBER(7,2),
Depno NUMBER(@) NOT NULL

CONSTRAINT Dept_fkey REFERENCES Dept_tab(Depno))

GRANT SELECT ON Sales_staff TO human_resources;

The CREATE SCHEM®mmand does not support Oracle extensions to the ANSI
CREATE TABLENd CREATE VIEWommands (for example, the STORAGIElause).

Privileges Required to Create Multiple Schema Objects

To create schema objects, such as multiple tables, using the CREATE SCHEMA
command, you must have the required privileges for any included operation.

Managing Schema Objects 2-37

Naming Schema Objects

Naming Schema Objects

You should decide when you want to use partial and complete global object names
in the definition of views, synonyms, and procedures. Keep in mind that database
names should be stable, and databases should not be unnecessarily moved within a
network.

In a distributed database system, each database should have a unique global name.
The global name is composed of the database name and the network domain that
contains the database. Each schema object in the database then has a global object
name consisting of the schema object name and the global database name.

Because Oracle ensures that the schema object name is unique within a database,
you can ensure that it is unique across all databases by assigning unique global
database names. You should coordinate with your database administrator on this
task, because it is usually the DBA who is responsible for assigning database names.

Name Resolution in SQL Statements
An object name takes the following form:
[schema.] namd@database |

Some examples include:

Emp_tab
ScottEmp_tab
Scott.Emp_tab@Personnel

A session is established when a user logs onto a database. Object names are
resolved relative to the current user session. The username of the current user is the
default schema. The database to which the user has directly logged-on is the default
database.

Oracle has separate namespaces for different classes of objects. All objects in the
same namespace must have distinct names, but two objects in different namespaces
can have the same name. Tables, views, snapshots, sequences, synonyms,
procedures, functions, and packages are in a single namespace. Triggers, indexes,
and clusters each have their own individual namespace. For example, there can be a
table, trigger, and index all named SCOTTEMP_TAB

Based on the context of an object name, Oracle searches the appropriate namespace
when resolving the name to an object. For example, in the following statement:

DROP CLUSTER Test

2-38 Application Developer's Guide - Fundamentals

Renaming Schema Objects

Oracle looks up TEST in the cluster namespace.

Rather than supplying an object name directly, you can also refer to an object using
a synonym. A private synonym name has the same syntax as an ordinary object
name. A public synonym is implicitly in the PUBLIC schema, but users cannot
explicitly qualify a synonym with the schema PUBLIC.

Synonyms can only be used to reference objects in the same namespace as tables.
Due to the possibility of synonymes, the following rules are used to resolve a name
in a context that requires an object in the table namespace:

1. Look up the name in the table namespace.

2. If the name resolves to an object that is not a synonym, then no further work is
necessary.

3. If the name resolves to a private synonym, then replace the name with the
definition of the synonym and return to step 1.

4. If the name was originally qualified with a schema, then return an error;
otherwise, check if the name is a public synonym.

5. If the name is not a public synonym, return an error; otherwise, then replace the
name with the definition of the public synonym and return to step 1.

When global object names are used in a distributed database (either explicitly or
indirectly within a synonym), the local Oracle session resolves the reference as is
locally required (for example, resolving a synonym to a remote table’s global object
name). After the partially resolved statement is shipped to the remote database, the
remote Oracle session completes the resolution of the object as above.

See Also: See Oracle8i Concepts for more information about name
resolution in a distributed database.

Renaming Schema Objects

If necessary, you can rename some schema objects using two different methods:
drop and re-create the object, or rename the object using the SQL command
RENAME

Managing Schema Objects 2-39

Renaming the Schema

Note: If you drop an object and re-create it, then all privilege
grants for the object are lost when the object is dropped. Privileges
must be granted again when the object is re-created.

If you use the RENAMEommand to rename a table, view, sequence, or a private
synonym of a table, view, or sequence, then grants made for the object are carried
forward for the new name, and the next statement renames the SALES STAFF
view:

RENAME Sales_staff TO Dept_30;

You cannot rename a stored PL/SQL program unit, public synonym, index, or
cluster. To rename such an object, you must drop and re-create it.

Renaming a schema object has the following effects:

« Allviews and PL/SQL program units dependent on a renamed object become
invalid (must be recompiled before next use).

« All synonyms for a renamed object return an error when used.

Privileges Required to Rename an Object
To rename an object, you must be the owner of the object.

Renaming the Schema

The following statement sets the current schema of the session to the schema name
given in the statement.

ALTER SESSION SET CURRENT_SCHEMA = <schema name>

Any subsequent SQL statements will use this schema name for the schema qualifier
when the qualifier is missing. Note that the session still has only the privileges of
the current user and does not acquire any extra privileges by the above ALTER
SESSIONstatement.

For example:

CONNECT scottftiger
ALTER SESSION SET CURRENT_SCHEMA =|oe;
SELECT * FROM emp_tab;

2-40 Application Developer's Guide - Fundamentals

Listing Information about Schema Objects

Since emp_tab is not schema-qualified, the table name is resolved under schema
joe .Butifscott does not have select privilege on table joe .emp_tab , then
scott cannot execute the SELECTstatement.

Listing Information about Schema Objects

The data dictionary provides many views that provide information about schema
objects. The following is a summary of the views associated with schema objects:

« ALL OBJECTSUSER_OBJECTS

« ALL CATALOGUSER_CATALOG

« ALL TABLES USER_TABLES

« ALL TAB _COLUMNSJSER_TAB_COLUMNS

« ALL TAB_COMMENTS/SER_TAB_COMMENTS
. ALL COL_COMMENTBSER_COL_COMMENTS
« ALL VIEWS, USER_VIEWS

« ALL MVIEWS, USER_MVIEWS

« ALL_INDEXES, USER_INDEXES

« ALL IND_COLUMNSUSER_IND_COLUMNS

. USER_CLUSTERS

« USER_CLU_COLUMNS

« ALL SEQUENCESJSER_SEQUENCES

« ALL SYNONYMSJSER_SYNONYMS

« ALL DEPENDENCIESUSER_DEPENDENCIES
Example 1: Listing Different Schema Objects by Type The following query lists all of the
objects owned by the user issuing the query:

SELECT Object_name, Object_type FROM User_objects;

The query above might return results similar to the following:

OBJECT_NAME OBJECT_TYPE
EMP_DEPT CLUSTER
EMP_TAB TABLE

Managing Schema Objects 2-41

Listing Information about Schema Objects

DEPT_TAB TABLE
EMP_DEPT_INDEX INDEX
PUBLIC_EMP SYNONYM
EMP_MGR VIEW

Example 2: Listing Column Information ~ Column information, such as name, datatype,
length, precision, scale, and default data values, can be listed using one of the views
ending with the _COLUMNSuffix. For example, the following query lists all of the
default column values for the EMP_TABand DEPT TAB tables:

SELECT Table_name, Column_name, Data_default
FROM User_tab_columns
WHERE Table_name ='DEPT_TAB' OR Table_name =’'EMP_TAB;,

Considering the example statements at the beginning of this section, a display
similar to the one below is displayed:

TABLE_NAME COLUMN_NAME DATA DEFAULT

DEPT TAB DEPTNO
DEPT TAB DNAME

DEPT TAB LOC (NEW YORK)
EMP_TAB EMPNO

EMP_TAB ENAME

EMP_TAB JOB

EMP_TAB MGR

EMP TAB HIREDATE (sysdate)
EMP TAB SAL

EMP_TAB COMM

EMP_TAB DEPTNO

Note: Not all columns have a user-specified default. These
columns assume NULLwhen rows that do not specify values for
these columns are inserted.

2-42 Application Developer's Guide - Fundamentals

Listing Information about Schema Objects

Example 3: Listing Dependencies of Views and Synonyms When you create a view or a
synonym, the view or synonym is based on its underlying base object. The _
DEPENDENCIESIata dictionary views can be used to reveal the dependencies for a
view and the _ SYNONYM8ata dictionary views can be used to list the base object of
a synonym. For example, the following query lists the base objects for the synonyms
created by the user IWARD

SELECT Table_owner, Table_name

FROM All_synonyms
WHERE Owner ="JWARD;

This query could return information similar to the following:

TABLE_OWNER TABLE_NAME
SCOTT DEPT_TAB
SCOTT EMP_TAB

Managing Schema Objects 2-43

Listing Information about Schema Objects

2-44 Application Developer's Guide - Fundamentals

3

Selecting a Datatype

This chapter discusses how to use Oracle built-in datatypes in applications. Topics
include:

Oracle Built-In Datatypes
ANSI/ISO, DB2, and SQL/DS Datatypes

Data Conversion

See Also: For information about more complex types, such as
object types, varrays, and nested tables, refer to Oracle8i Application
Developer’s Guide - Object-Relational Features .

Selecting a Datatype 3-1

Oracle Built-In Datatypes

Oracle Built-In Datatypes

A datatype associates a fixed set of properties with the values that can be used in a
column of a table or in an argument of a procedure or function. These properties
cause Oracle to treat values of one datatype differently from values of another
datatype. For example, Oracle can add values of NUMBERIatatype, but not values
of RAWdatatype.

Oracle supplies the following built-in datatypes:
« Character datatypes
- CHAR
- NCHAR
- VARCHAR2 and VARCHAR
- NVARCHAR2
- CLOB
- NCLOB
— LONG
« NUMBERlatatype
« DATEdatatype
« Binary datatypes
- BLOB
- BFILE
- RAW
— LONG RAW

Another datatype, ROWIDis used for values in the ROWIDpseudocolumn, which
represents the unique address of each row in a table.

See Also: See Oracle Call Interface Programmer’s Guide for general
descriptions of these datatypes, and see Oracle8i Application
Developer’s Guide - Large Objects (LOBs) for information about the
LOBdatatypes.

Table 3-1 summarizes the information about each Oracle built-in datatype.

3-2 Application Developer's Guide - Fundamentals

Oracle Built-In Datatypes

Table 3-1 Summary of Oracle Built-In Datatypes

Datatype
CHAR(size)

VARCHARZsize)

NCHARSize)

NVARCHARBize)

CLOB

Description

Fixed-length character
data of length size bytes

Variable-length
character data

Fixed-length character
data of length size
characters or bytes,
depending on the
national character set

Variable-length
character data of length
size characters or bytes,
depending on national
character set: A
maximum size must be
specified

Single-byte character
data

Column Length and Default

Fixed for every row in the table (with trailing
blanks); maximum size is 2000 bytes per row,
default size is 1 byte per row. Consider the
character set (one-byte or multibyte) before
setting size.

Variable for each row, up to 4000 bytes per
row: Consider the character set (one-byte or
multibyte) before setting size: A maximum size
must be specified.

Fixed for every row in the table (with trailing
blanks). Column size is the number of
characters for a fixed-width national character
set or the number of bytes for a varying-width
national character set. Maximum size is
determined by the number of bytes required
to store one character, with an upper limit of
2000 bytes per row. Default is 1 character or 1
byte, depending on the character set.

Variable for each row. Column size is the
number of characters for a fixed-width
national character set or the number of bytes
for a varying-width national character set.
Maximum size is determined by the number of
bytes required to store one character, with an
upper limit of 4000 bytes per row. Default is 1
character or 1 byte, depending on the
character set.

Up to 2732 - 1 bytes, or 4 gigabytes.

Selecting a Datatype 3-3

Oracle Built-In Datatypes

Table 3-1 Summary of Oracle Built-In Datatypes (Cont.)

NCLOB

LONG

NUMBER (p, s)

DATE

BLOB

BFILE

RAW (size)

LONG RAW

ROWID

Single-byte or
fixed-length multibyte
national character set
(NCHARdata

Variable-length
character data

Variable-length
numeric data.:
Maximum precision p
and/or scale s is 38

Fixed-length date and
time data, ranging

fromJan. 1, 4712 B.C.E.

to Dec. 31, 4712 C.E.

Unstructured binary
data

Binary data stored in
an external file

Variable-length raw
binary data

Variable-length raw
binary data

Binary data
representing row
addresses

Up to 2732 - 1 bytes, or 4 gigabytes.

Variable for each row in the table, up to 231 -
1 bytes, or 2 gigabytes, per row. Provided for
backward compatibility.

Variable for each row. The maximum space
required for a given column is 21 bytes per
row.

Fixed at 7 bytes for each row in the table.
Default format is a string (such as DDMONRR
specified by NLS_DATE_FORMAparameter.

Up to 2732 - 1 bytes, or 4 gigabytes.

Up to 2732 - 1 bytes, or 4 gigabytes.

Variable for each row in the table, up to 2000
bytes per row. A maximum size must be
specified. Provided for backward
compatibility.

Variable for each row in the table, up to 231 -
1 bytes, or 2 gigabytes, per row. Provided for
backward compatibility.

Fixed at 10 bytes (extended ROWID or 6 bytes
(restricted ROWID for each row in the table.

3-4 Application Developer’'s Guide - Fundamentals

Oracle Built-In Datatypes

Using Character Datatypes

Use the character datatypes to store alphanumeric data.

CHARand NCHARJatatypes store fixed-length character strings.

VARCHAR2nd NVARCHAR®atatypes store variable-length character strings.
(The VARCHARIatatype is synonymous with the VARCHAR2latatype.)

CLOBand NCLOBdatatypes store single-byte and multibyte character strings of
up to four gigabytes.

See Also: Oracle8i Application Developer’s Guide - Large Objects
(LOBs)

The LONCdatatype stores variable-length character strings containing up to two
gigabytes, but with many restrictions.

See Also: "Restrictions on LONG and LONG RAW Data"

This datatype is provided for backward compatibility with existing
applications; in general, new applications should use CLOBand NCLOB
datatypes to store large amounts of character data.

When deciding which datatype to use for a column that will store alphanumeric
data in a table, consider the following points of distinction:

Space Usage

To store data more efficiently, use the VARCHAR®2atatype. The CHARdatatype
blank-pads and stores trailing blanks up to a fixed column length for all column
values, while the VARCHAR®2atatype does not blank-pad or store trailing
blanks for column values.

Comparison Semantics

Use the CHARdatatype when you require ANSI compatibility in comparison
semantics (when trailing blanks are not important in string comparisons). Use
the VARCHARZ2vhen trailing blanks are important in string comparisons.

Future Compatibility

The CHARand VARCHARZ2latatypes are and will always be fully supported. At
this time, the VARCHARIatatype automatically corresponds to the VARCHAR?2
datatype and is reserved for future use.

Selecting a Datatype 3-5

Oracle Built-In Datatypes

CHARVARCHARZand LONGdata is automatically converted from the database
character set to the character set defined for the user session by the NLS_LANGUAGE
parameter, where these are different.

Column Lengths for Single-Byte and Multibyte Character Sets

The lengths of CHARand VARCHARZ2olumns are specified in bytes rather than
characters, and are constrained as such. The lengths of NCHARind NVARCHAR?2
columns are specified either in bytes or in characters, depending on the national
character set being used.

When using a multibyte database character encoding scheme, consider carefully the
space required for tables with character columns. If the database character encoding
scheme is single-byte, then the number of bytes and the number of characters in a
column is the same. If it is multibyte, then there generally is no such
correspondence. A character might consist of one or more bytes depending upon
the specific multibyte encoding scheme, and whether shift-in/shift-out control
codes are present.

See Also:

« Oracle8i National Language Support Guide
« Oracle8i SQL Reference

« Oracle8i Time Series User’s Guide

for information about National Language Support features of
Oracle and support for different character encoding schemes.

Comparison Semantics

Oracle compares CHARand NCHARvalues using blank-padded comparison semantics. If
two values have different lengths, then Oracle adds blanks at the end of the shorter
value, until the two values are the same length. Oracle then compares the values
character-by-character up to the first character that differs. The value with the
greater character in the first differing position is considered greater. Two values that
differ only in the number of trailing blanks are considered equal.

Oracle compares VARCHAR2nd NVARCHAR®alues using non-padded comparison
semantics. Two values are considered equal only if they have the same characters
and are of equal length. Oracle compares the values character-by-character up to the
first character that differs. The value with the greater character in that position is
considered greater.

Because Oracle blank-pads values stored in CHARcolumns but not in VARCHAR?2
columns, a value stored in a VARCHARZ2olumn may take up less space than if it

3-6 Application Developer’'s Guide - Fundamentals

Oracle Built-In Datatypes

were stored in a CHARcolumn. For this reason, a full table scan on a large table
containing VARCHARZ2olumns may read fewer data blocks than a full table scan on
a table containing the same data stored in CHARcolumns. If your application often
performs full table scans on large tables containing character data, then you might
be able to improve performance by storing this data in VARCHARZ2olumns rather
than in CHARcolumns.

However, performance is not the only factor to consider when deciding which of
these datatypes to use. Oracle uses different semantics to compare values of each
datatype. You might choose one datatype over the other if your application is
sensitive to the differences between these semantics. For example, if you want
Oracle to ignore trailing blanks when comparing character values, then you must
store these values in CHARcolumns.

See Also: For more information on comparison semantics for
these datatypes, see the Oracle8i Reference.

Using the NUMBER Datatype

Use the NUMBERIatatype to store real numbers in a fixed-point or floating-point
format. Numbers using this datatype are guaranteed to be portable among different
Oracle platforms, and offer up to 38 decimal digits of precision. You can store
positive and negative numbers of magnitude 1 x 107-130 to 9.99...x107125, as well
as zero, in a NUMBERolumn.

For numeric columns you can specify the column as a floating-point number:
Column_name NUMBER

Or, you can specify a precision (total number of digits) and scale (number of digits
to right of decimal point):

Column_name NUMBER (<precision>, <scale>)

Although not required, specifying the precision and scale for numeric fields
provides extra integrity checking on input. If a precision is not specified, then the

column stores values as given. Table 3-2 shows examples of how data would be
stored using different scale factors.

Table 3-2 How Scale Factors Affect Numeric Data Storage

Input Data Stored As Specified As

7,456,123.89 NUMBER 7456123.89

Selecting a Datatype 3-7

Oracle Built-In Datatypes

Table 3-2 How Scale Factors Affect Numeric Data Storage

Input Data Stored As Specified As

7,456,123.89 NUMBER (9) 7456124

7,456,123.89 NUMBER (9,2) 7456123.89

7,456,123.89 NUMBER (9,1) 7456123.9

7,456,123.89 NUMBER (6) (not accepted, exceeds precision)
7,456,123.89 NUMBER (7, -2) 7456100

See Also: For information about the internal format for the
NUMBERIatatype, see Oracle8i Concepts.

Using the DATE Datatype
Use the DATEdatatype to store point-in-time values (dates and times) in a table. The
DATEdatatype stores the century, year, month, day, hours, minutes, and seconds.

Oracle uses its own internal format to store dates. Date data is stored in fixed-length
fields of seven bytes each, corresponding to century, year, month, day, hour, minute,
and second.

See Also: See the Oracle Call Interface Programmer’s Guide for a
complete description of the Oracle internal date format.

Date Format

For input and output of dates, the standard Oracle default date format is
DD-MON-RRFor example:

‘13-NOV-1992
To change this default date format on an instance-wide basis, use the NLS_DATE_
FORMAPparameter. To change the format during a session, use the ALTER SESSION

statement. To enter dates that are not in the current default date format, use the TO_
DATEfunction with a format mask. For example:

TO_DATE (November 13, 1992, 'MONTH DD, YYYY)

3-8 Application Developer’'s Guide - Fundamentals

Oracle Built-In Datatypes

See Also: Oracle Julian dates might not be compatible with Julian
dates generated by other date algorithms. For information about
Julian dates, see Oracle8i Concepts.

If the date format DD-MON-YYis used, then YY indicates the year in the 20th century
(for example, 31-DEC-92 is December 31, 1992). If you want to indicate years in any
century other than the 20th century, then use a different format mask, such as the
default RR

Time Format

Time is stored in 24-hour format#HH:MM:SS By default, the time in a date field is
12:00:00 A.M. (midnight) if no time portion is entered. In a time-only entry, the date
portion defaults to the first day of the current month. To enter the time portion of a
date, use the TO_DATEfunction with a format mask indicating the time portion, as
in:

Note: You may need to set up the following data structures for
certain examples to work:

CREATE TABLE Birthdays_tab (Bname VARCHAR2(20),Bday DATE)

INSERT INTO Birthdays_tab (bname, bday) VALUES
(ANNIE,TO_DATE(13-NOV-92 10:56 AM.,DD-MON-YY HH:MIAM.));

To compare dates that have time data, use the SQL function TRUNGf you want to
ignore the time component. Use the SQL function SYSDATRo return the system
date and time. The FIXED_DATE nitialization parameter allows you to set
SYSDATBEO a constant; this can be useful for testing.

Establishing Year 2000 Compliance

An application must satisfy the following criteria to meet the requirements for Year
2000 (Y2K) compliance:

« Process date information before, during, and after 1st January 2000 without
error. This entails accepting date input, providing date output, storing date
information and performing calculation on dates or portions of dates.

« Provide services as published in its documentation before, during and after 1st
January 2000 without changes in operation resulting from the advent of the new
century.

Selecting a Datatype 3-9

Oracle Built-In Datatypes

« Respond to two digit date input in a way that resolves ambiguity as to the
century in a clearly defined manner.

« Manage the leap year occurring in the year 2000 according to the
guad-centennial rule.

These criteria are a superset of the Year 2000 conformance requirements set out by
the British Standards Institute in DISC PD-2000-1 A Definition of Year 2000
Conformity Requirements.

You can warrant your application as Y2K compliant only if you have validated its
conformance at all three of the following system levels:

« Hardware

« System software, including databases, transaction processors and operating
systems

« Application software, from third parties or developed in-house

Oracle Server Year 2000 Compliance

The Oracle Server is Year 2000 compliant. No operational problems are expected
with the Oracle Server, networking and system management products. Oracle’s
Development Organization has conducted tests of various Year 2000 operational
scenarios to verify that there is no impact to users at the turn of the century. These
scenarios included tests of replication, point-in-time recovery, distributed
transactions. System management and networking features across time zones /
datelines / centuries have also been tested.

Please note that Oracle’s Year 2000 product compliance does not eliminate the need
for you to test your own applications. Most importantly, your application software
has to be tested on the Oracle Server to ensure that operations having to do with the
year 2000 perform as promised. This test is critical even if the application software
is certified to be Year 2000 compliant because there are no universal protocol
definitions that can guarantee conformance without such testing.

Centuries and the Year 2000

Oracle stores year data with the century information. For example, the Oracle
database stores 1996 or 2001, and not just 96 or 01. The DATEdatatype always stores
a four-digit year internally, and all other dates stored internally in the database have
four digit years. Oracle utilities such as import, export, and recovery also deal
properly with four-digit years.

3-10 Application Developer's Guide - Fundamentals

Oracle Built-In Datatypes

Applications that use the Oracle RDBMS (Oracle7 and Oracle8 Server) and exploit
the DATEdata type (for date and/or date with time values) need have no concerns
about their stored data when the year 2000 approaches. The Oracle7 and Oracle8
Server DATE data type stores date and time data to a precision that includes a four
digit year and a time component down to seconds (typically
‘YYYY:MM:DD:HH24:MI:SS’)

However, some applications might be written with an assumption about the year
(such as assuming that everything is 19xx). The application might hand over a
two-digit year to the database, and the procedures that Oracle uses for determining
the century could be different from what the programmer expects (see
"Programming Hints and Tips" on page 3-15). For this reason, you should review
and test your code with regard to the Year 2000.

The 'RR’ Date Format

The RR date format element of the TO_DATEand TO_CHARunctions allows a
database site to default the century to different values depending on the two-digit
year, so that years 50 to 99 default to 19xx and years 00 to 49 default to 20xx.
Therefore, regardless of the current century at the time the data is entered, the 'RR’
format will ensure that the year stored in the database is as follows:

« Ifthe current year is in the second half of the century (50 - 99), and a two-digit
year between ‘00’ and ‘49’ is entered, this will be stored as a ’next century’ year.
For example, ‘02’ entered in 1996 will be stored as ‘2002’

« Ifthe current year is in the second half of the century (50 - 99), and a two-digit
year between ‘50’ and ‘99’ is entered, this will be stored as a ’current century’
year. For example, ‘97’ entered in 1996 will be stored as ‘1997°.

« Ifthe current year is in the first half of the century (00 - 49), and a two-digit year
between ‘00" and ‘49’ is entered, this will be stored as a ’current century’ year.
For example, ‘02’ entered in 2001 will be stored as ‘2002’

« Ifthe current year is in the first half of the century (00 - 49), and a two-digit year
between ‘50’ and ‘99’ is entered, this will be stored as a ’previous century’ year.
For example, ‘97’ entered in 2001 will be stored as *1997".

The ‘RR’ date format is available for inserting and updating DATEdata in the
database. It is not required for retrieval or query of data already stored in the
database as Oracle has always stored the YEARcomponent of a date in its four-digit
form.

Here is an example of the RR usage:

Selecting a Datatype 3-11

Oracle Built-In Datatypes

INSERT INTO emp (empno, deptno,hiredate) VALUES
(9999, 20, TO_DATE('01-jan-03', 'DD-MON-RRY));

INSERT INTO emp (empno, deptno hiredate) VALUES
(8888, 20, TO_DATE(01{an-67, 'DD-MON-RR));

SELECT empno, deptno,

TO_CHAR(hiredate, DD-MON-YYYY’) hiredate
FROM emp;

This produces the following data:
EMPNO DEPTNO HIREDATE

8888 20 01-JAN-1967
9999 20 01-JAN-2003

The 'CC’ Date Format

The CC date format element of the TO_CHAR function returns the century of a
given date. An example of CC usage follows:

SELECT TO_CHAR(TO_DATE(01-JAN-2000,DD-MON-YYYY’),CC) CC FROM DUAL,

This produces the following result:
CcC

20

A second example of CC usage follows:
SELECT TO_CHAR(TO_DATE(01-JAN-2001",DD-MON-YYYY’),CC’) CC FROM DUAL;

This produces the following result:
CcC

21

The CC date format element of the TO_CHARunction sets the century value to one
greater than the first two digits of a four-digit year (for example, '20' from '1900").
For years that are a multiple of 100, this is not the true century. Strictly speaking, the
century of '1900' is not the twentieth century (which began in 1901) but rather the
nineteenth century.

3-12 Application Developer's Guide - Fundamentals

Oracle Built-In Datatypes

The following workaround computes the correct century for any Common Era (CE,
formerly known as AD) date. If userdate is a CE date for which you want the true
century, use the following expression:

SELECT DECODE (TO_CHAR Hiredate, 'YY),
‘00, TO_CHAR (Hiredate - 366, 'CC),
TO CHAR(Hiredate, 'CC)) FROM Emp_tab;

This expression works as follows: Get the last two digits of the year. If it is '00', then
it is a year in which the Oracle century is one year too large, and compute a date in
the preceding year (whose Oracle century is the desired true century). Otherwise,
use the Oracle century.

See Also: For more information about date format codes, see
Oracle8 SQL Reference.

Storing Dates in Character Data Types

Where applications store date values in CHAR or VARCHAR?2 datatypes, and the
century information is not maintained, you will need to modify the application to
include routines which ensure that such dates are treated appropriately when
affected by the change in century. You can do this by changing the strings to
maintain century information or, with certain constraints, by using the 'RR’ date
format when interpreting the string as a date.

If you are creating a new application, or if you are modifying an application to
ensure that dates stored as character strings are Year 2000 compliant, we advise that
you convert dates to use the Oracle DATEdata type. If this is not feasible, store the
dates in a form which is language and format independent, and which handles full
years. For example, utilize ‘SYYYY/MM/DD’ plus the time element as
‘HH24:M1:SS’ if necessary. Note that dates stored in this form must be converted to
the correct external format whenever they are displayed or received from users or
other programs.

The format 'SYYYY/MM/DD HH24:MI:SS' has the following advantages:
« Itis language-independent in that the months are numeric.
« It contains the full four-digit year so centuries are unambiguous.

« The time is represented fully. Since the most significant elements occur first,
character-based sort operations will process the dates correctly.

Selecting a Datatype 3-13

Oracle Built-In Datatypes

The “S” format element prefixes BC dates with “-*.

Viewing Date Settings
The following views will enable you to verify what your settings are:

« VSNLS_DATABASE_PARAMETERSshows instance wide NLS parameters
whether explicitly declared in the INIT .ORAor defaulting.

« NLS_SESSION_PARAMETERS shows current session values which may
have been been changed by means of ALTER SESSION

A format model is a character that describes the format of DATEor NUMBERIata
stored in a character string. You may use the format model as an argument of the
TO_CHAPRY TO_DATEfunction for one of the following:

« To specify the format for Oracle to use in returning a value from the database.

« To specify the format for a value you have specified for Oracle to store in the
database.

Please note that the format does not change the internal representation of the value
in the database.

Altering Date Settings

You may set the date format in your environment or as the default for the entire
database. If you set this in your environment it will override the setting in the
initialization parameter.

Change the NLS_DATE_FORMAT parameter settings in the following order:
1. Setthe Client side e.g., Windows NT registry and Unix environment variable

2. Set theSession using ALTER SESSION SET NLS_DATE_FORMAT. To change
the date format for the session, issue the following SQL command:

ALTER SESSION SETNLS_DATE_FORMAT ='DD-MON-RR'
3. Set the Server using the init.ora NLS_DATE_FORMAT parameter. To change

the default date format for the entire database, change INIT .ORAto include the
following

NLS_DATE_FORMAT = DD-MON-RR

The NLS_DATE_FORMAT setting relies on the above order. Therefore, for a
client/server application, NLS_DATE_FORMAT needs to

3-14 Application Developer's Guide - Fundamentals

Oracle Built-In Datatypes

be set on the server and the client.

Caution: Note that changing this parameter at the database level
will change all existing date fields as described above. We suggest
you make changes at the session level unless all users and all
currently running applications process dates in the range
1950-2049.

Programming Hints and Tips

In this section we describe some common programming problems around Y2K
compliance. These problems may seem to derive from incorrect Year 2000
processing by the database engine, but on closer inspection are seen to arise from
incorrect use of Oracle technology.

Example 1

Your application may have defined the year of a date using a column of CHAR(2)
or NUMBER(2)in order to save disk space. This can lead to unpredictable results
when 20xx dates are mixed with 19xx dates. To resolve this, modify your
application to use the full 4-digit year.

Example 2

You application may be designed to store a 4-digit year, but the code may allow for
the incorrect storage of 2-digit year rows with the 4-digit year rows. This will lead
to unpredictable results for queries by date if the date columns contains dates
earlier than 1900. To deal with this problem, have your application check for rows
which contain dates earlier than 1900, and then adjust for this.

Example 3

Examine your applications to determine if it processes dates prior to 1950 or later
than 2049, and store the year as 2-digits. If both conditions are met, your application
should not use the 'RR’ format but should instead expand the 2 digit year ‘YY * into
a4 digit year ‘“YYYY’, and store the 4 digit number in the database.

Example 4

The following unusual error helps illuminate the interaction between NLS_DATE_
FORMA®Nd the Oracle 'RR’ format mask. The following is a syntactically correct
statement but contains a logical flaw:

SELECT TO_CHAR(TO_DATE(LAST_DAY/(01-FEB-00), DD-MON-RR)), MM/DD/RRRR)

Selecting a Datatype 3-15

Oracle Built-In Datatypes

FROM DUAL;

The above query will return 02/28/2000. This is consistent with the defined
behavior of the ‘RR’ format element. However, since the year 2000 is a leap year,
this is incorrect.

The problems is that the operation is using the default NLS_DATE_FORMAWhich
is 'DD-MON-YY'. If the NLS_DATE_FORMAIE changed to 'DD-MON-RR’, then the
same select returns 02/29/2000, which is the correct value.

Let us evaluate the query as the Oracle Server engine does. The first function
processed is the innermost function, LAST_DAYBecause NLS _DATE_FORMAIE YY,
this correctly returns 2/28, because it is using the year 1900 to evaluate the
expression. The value 2/28 is then returned to the next outer function. So, the TO _
DATEand TO_CHARunctions format the value 02/28/00 using the 'RR’ format
mask and display the result as 02/28/2000.

If SELECT LAST_DAYO01-FEB-00') FROM DUAIs issued, the result will change
depending on the NLS_DATE_FORMAWith 'YY’, the LAST_DAYreturned is
28-Feb-00 because the year is interpreted as 1900. With 'RR’, the LAST_DAY
returned is 29-Feb-00 because the year is interpreted as 2000. The year 1900 is not a
leap year whereas the year 2000 is a leap year.

Example 5

When the DECODEunction is used and if the third argument has data type CHAR,
VARCHAR?, or if it is NULL, then Oracle converts the return value to datatype
VARCHAR?2. Therefore, the following statement:

INSERT INTO destination_table (date_column)
SELECT DECODE('31.12.2000', ‘00000000, NULL,
TO_DATE(31.12.2000, DDMM.YYYY")
FROM DUAL;
inserts date 31.12.1900.
Another sample statement:

INSERT INTO destination_table (date_column)
SELECT DECODE(01.11.1999', '00000000', NULL, sysdate+1000)
FROM DUAL,

inserts date 04.10.1901.

In the above examples, the third argument in the DECODRrgument list is a NULL
value, so Oracle implicitly converted the DATE value to a VARCHAR2 string using

3-16 Application Developer's Guide - Fundamentals

Oracle Built-In Datatypes

the default format mask. This is DD-MON-YY, hence loses the first two digits of the
year.

Note: When inserting the record into a table, Oracle implicitly converts the string into a
date, using the first 2-digits of the current year. To ensure the correct year is interpreted, set
NLS _DATE_FORMAGTing 'RR’ or 'YYYY".

Example 6

If creating a partitioned table using a DATE data type column in the partition key,
use a 4-digit year when specifying date ranges. For example:

CREATE TABLE stock _xactions (stock_symbol CHAR(5),

stock_series CHAR(L),
num_shares NUMBER(10),
price NUMBER(5,2),
trade_date DATE)
STORAGE (INITIAL 100K NEXT 50K) LOGGING
PARTITION BY RANGE (trade_date)

(PARTITION sx1992 VALUES LESS THAN (TO_DATE(01-JAN-1993, DD-MON-YYYY?))
TABLESPACE tsO

NOLOGGING,
PARTITION sx1993 VALUES LESS THAN (TO_DATE(01-JAN-1994'DD-MON-YYYY’))

TABLESPACE ts1,

PARTITION sx1994 VALUES LESS THAN (TO_DATE(01-JAN-1995,DD-MON-YYYY")
TABLESPACE ts2);

Example 7

Oracle views depend on the session state. In particular, a predicate with a 2-digit
year, such as, "where col '12-MAY-99" ", is allowed in a view. Interpretation of the
full 4-digit year depends on the setting of NLS DATE_FORMAT.

Selecting a Datatype 3-17

Oracle Built-In Datatypes

Using the LONG Datatype

Note: The LONGdatatype is provided for backward compatibility
with existing applications. For new applications, you should use
the CLOBand NCLOBdatatypes for large amounts of character data.
See Oracle8i Application Developer’s Guide - Large Objects (LOBs) for
information about the CLOBand NCLOBdatatypes.

The LONGdatatype can store variable-length character data containing up to two
gigabytes of information. The length of LONGvalues might be limited by the
memory available on your computer.

You can use columns defined as LONGNn SELECTIists, SET clauses of UPDATE
statements, and VALUESclauses of INSERT statements. LONGcolumns have many
of the characteristics of VARCHARZolumns.

Restrictions on LONG and LONG RAW Data

Although LONG(and LONG RAWSee below) columns have many uses, their use has
some restrictions:

Only one LONCGcolumn is allowed per table.
LONGcolumns cannot be indexed.
LONCGCcolumns cannot appear in integrity constraints.

LONCGCcolumns cannot be used in WHERE, GROUP BY, ORDER, BYCONNECT
BY clauses or with the DISTINCT operator in SELECTstatements.

LONGcolumns cannot be referenced by SQL functions (such as SUBSTRor
INSTR).

LONGcolumns cannot be used in the SELECTIist of a subquery or queries
combined by the set operators UNION INTERSECT or MINUS

LONGcolumns cannot be used in SQL expressions.

LONGcolumns cannot be referenced when creating a table with a query
(CREATE TABLE AS SELECT..) or when inserting into a table or view with a
query (INSERT INTO... SELECT..).

A variable or argument of a PL/SQL program unit cannot be declared using the
LONCdatatype.

3-18 Application Developer's Guide - Fundamentals

Oracle Built-In Datatypes

« Variables in database triggers cannot be declared using the LONGor LONG RAW
datatypes.

« References to :NEWANd :OLDin database triggers cannot be used with LONGor
LONG RAWbIumns.

« LONGand LONG RAWbIlumns cannot be used in distributed SQL statements.
« LONGand LONG RAMWbIlumns cannot be replicated.

Note: If you design tables containing LONGor LONG RAWata,
then you should place each LONGor LONG RAWbIumn in a table
separate from any other data associated with it, rather than storing
the LONGor LONG RAWbIlumn and its associated data together in
the same table. You can then relate the two tables with a referential
integrity constraint. This design allows SQL statements that access
only the associated data to avoid reading through LONGor LONG
RAWdata.

Example of LONG Datatype

To store information on magazine articles, including the texts of each article, create
two tables. For example:

CREATE TABLE Article_header
(d NUMBER PRIMARY KEY,
Tite VARCHAR2(200),
First author VARCHAR2(30),
Joumal VARCHAR2(50),
Pub_date DATE);

CREATE TABLE article_text

(d NUMBER
REFERENCES
Article_header,

Text LONG);

The ARTICLE_TEXT table stores only the text of each article. The ARTICLE_
HEADERable stores all other information about the article, including the title, first
author, and journal and date of publication. The two tables are related by the
referential integrity constraint on the ID column of each table.

This design allows SQL statements to query data other than the text of an article
without reading through the text. If you want to select all first authors published in
Nature magazine during July 1991, then you can issue this statement that queries
the ARTICLE_HEADERable:

Selecting a Datatype 3-19

Oracle Built-In Datatypes

SELECT First_author
FROM Article_header
WHERE Joumal = NATURE'
AND TO_CHAR(Pub_date, MM YYYY') ='07 1991,

If the text of each article were stored in the same table with the first author,

publication, and publication date, then Oracle would need to read through the text
to perform this query.

Using RAW and LONG RAW Datatypes

Note: The RAWANd LONG RAWatatypes are provided for
backward compatibility with existing applications. For new
applications, you should use the BLOBand BFILE datatypes for
large amounts of binary data.

See Also: See Oracle8i Application Developer’s Guide - Large Objects
(LOBs) for information about the BLOBand BFILE datatypes.

The RAWANd LONG RAWWatatypes store data that is not interpreted by Oracle (that
is, not converted when moving data between different systems). These datatypes
are intended for binary data and byte strings. For example, LONG RA\AN store
graphics, sound, documents, and arrays of binary data; the interpretation is
dependent on the use.

Net8 and the Export and Import utilities do not perform character conversion when
transmitting RAWr LONG RAWata. When Oracle automatically converts RAWbr
LONG RAWata to and from CHARdata (as is the case when entering RAWHata as a
literal in an INSERT statement), the data is represented as one hexadecimal
character representing the bit pattern for every four bits of RAWHata. For example,
one byte of RAWHata with bits 11001011 is displayed and entered as 'CB'.

LONG RAWata cannot be indexed, but RAWHata can be indexed.

3-20 Application Developer's Guide - Fundamentals

Oracle Built-In Datatypes

See Also: For more information about restrictions on LONG RAW
data, see "Restrictions on LONG and LONG RAW Data".

ROWIDs and the ROWID Datatype

Every row in a nonclustered table of an Oracle database is assigned a unique ROWID
that corresponds to the physical address of a row's row piece (initial row piece if the
row is chained among multiple row pieces). In the case of clustered tables, rows in
different tables that are in the same data block can have the same ROWID

Each table in an Oracle database internally has a pseudocolumn named ROWID

See Also: Oracle8i Concepts for general information about the
ROWIDpseudocolumn and the ROWIDdatatype.

Extended ROWID Format

The Oracle Server uses an extended ROWI/format, which supports features such as
table partitions, index partitions, and clusters.

The extended ROWIDincludes the following information:
« Data object (segment) identifier

« Datafile identifier

« Block identifier

« Row identifier

The data object identifier is an identification number that Oracle assigns to schema
objects in the database, such as nonpartitioned tables or partitions. For example:

SELECT DATA_OBJECT_ID FROMALL _OBJECTS
WHERE OWNER ="SCOTT AND OBJECT_NAME ="EMP_TAB;,

This query returns the data object identifier for the EMP_TARable in the SCOTT
schema.

See Also: Oracle8i Supplied PL/SQL Packages Reference for
information about other ways to get the data object identifier, using
the DBMS_ROWIpackage functions.

Different Forms of the ROWID

Oracle documentation uses the term ROWIDin different ways, depending on
context. These uses are explained in this section.

Selecting a Datatype 3-21

Oracle Built-In Datatypes

Internal ROWID The internal ROWIDformat is an internal structure which holds
information that the server code needs to access a row. The restricted internal
ROWIDis 6 bytes on most platforms; the extended ROWIDis 10 bytes on these
platforms.

ROWID Pseudocolumn Each table and nonjoined view has a pseudocolumn called
ROWIDFor example:

CREATE TABLE T _tab (col Rowid);
INSERT INTO T_tab SELECT Rowid FROM Emp_tab WHERE Empno = 7499;

This command returns the ROWIDpseudocolumn of the row of the EMP_TARable
that satisfies the query, and inserts it into the T1 table.

External Character ROWID The extended ROWIDpseudocolumn is returned to the
client in the form of an 18-character string (for example,
"AAAABMAALAAAAQKAAA™M), which represents a base 64 encoding of the
components of the extended ROWIDin a four-piece format,
OOOOOOFFFBBBBBBRRR:

« OO0OOOOO: The data object number identifies the database segment (AAAA8mM
in the example). Schema objects in the same segment, such as a cluster of tables,
have the same data object number.

« FFF: The datafile that contains the row (file AAL in the example). File numbers
are unique within a database.

« BBBBBB: The data block that contains the row (block AAAAQK in the
example). Block numbers are relative to their datafile, not tablespace. Therefore,
two rows with identical block numbers could reside in two different datafiles of
the same tablespace.

« RRR: The row in the block (row AAA in the example).

There is no need to decode the external ROWIDyou can use the functions in the
DBMS_ROWIpackage to obtain the individual components of the extended ROWID

See Also: Oracle8i Supplied PL/SQL Packages Reference for
information about the DBMS_ROWIpackage.

The restricted ROWIDpseudocolumn is returned to the client in the form of an

18-character string with a hexadecimal encoding of the datablock, row, and datafile
components of the ROWID

3-22 Application Developer's Guide - Fundamentals

Oracle Built-In Datatypes

External Binary ROWID Some client applications use a binary form of the ROWIDFor
example, OCI and some precompiler applications can map the ROWIDto a 3GL
structure on bind or define calls. The size of the binary ROWIDs the same for
extended and restricted ROWIB. The information for the extended ROWIDis
included in an unused field of the restricted ROWIDstructure.

The format of the extended binary ROWIDexpressed as a C struct, is:

struct riddef {
ub4 ridobjnum; /* data objt-this feld is
unused in restricted ROWIDs %/
ub2 ridfilenum;
ubl Afiller;
ub4 ridblocknum;
ub2 ridslotnum;

ROWID Migration and Compatibility Issues

For backward compatibility, the restricted form of the ROWIDis still supported.
These ROWIDsexist in massive amounts of Oracle7 data, and the extended form of
the ROWIDis required only in global indexes on partitioned tables. New tables
always get extended ROWIDB.

See Also: Oracle8i Administrator’s Guide.

It is possible for an Oracle7 client to access an Oracle8 database. Similarly, an
Oracle8 client can access an Oracle7 Server. A client in this sense can include a
remote database accessing a server using database links, as well as a client 3GL or
4GL application accessing a server.

See Also: There is more information on the ROWID_TO _
EXTENDEDunction in Oracle8i Supplied PL/SQL Packages Reference
and Oracle8i Migration.

Accessing an Oracle7 Database from an Oracle8 Client ~ The ROWIDvalues that are
returned are always restricted ROWIDs Also, Oracle8 uses restricted ROWIDswhen
returning a ROWIDvalue to an Oracle7 or earlier server.

The following ROWIDfunctionality works when accessing an Oracle7 Server:
« Selecting a ROWIDand using the obtained value in a WHERElause
« WHERE CURRENT @Qfsor operations

Selecting a Datatype 3-23

ANSI/ISO, DB2, and SQL/DS Datatypes

« Storing ROWIB in user columns of ROWIDor CHARtype

« Interpreting ROWIDB using the hexadecimal encoding (not recommended, use
the DBMS_ROWIBunctions)

Accessing an Oracle8 Database from an Oracle7 Client ~ Oracle8 returns ROWIB in the

extended format. This means that you can only:

« Selecta ROWIDand use it in a WHEREIlause

« Use WHERE CURRENT Og¢ursor operations

« Store ROWIB in user columns of CHAR(18) datatype

Import and Export It is not possible for an Oracle7 client to import an Oracle8 table

that has a ROWIDcolumn (not the ROWIDpseudocolumn), if any row of the table
contains an extended ROWIDvalue.

ANSI/ISO, DB2, and SQL/DS Datatypes

You can define columns of tables in an Oracle database using ANSI/ISO, DB2, and
SQL/DS datatypes. Oracle internally converts such datatypes to Oracle datatypes.

The ANSI datatype conversions to Oracle datatypes are shown in Table 3-3. The
ANSI/ISO datatypes NUMERICDECIMAL and DECcan specify only fixed-point
numbers. For these datatypes, s defaults to 0.

Table 3-3 ANSI Datatype Conversions to Oracle Datatypes

ANSI SQL Datatype Oracle Datatype
CHARACTER (n), CHAR (n) CHAR (n)
NUMERIC (p,s), DECIMAL (p,s), DEC (p,s) NUMBER (p,s)
INTEGER, INT, SMALLINT NUMBER (38)
FLOAT (p) FLOAT (p)

REAL FLOAT (63)
DOUBLE PRECISION FLOAT (126)
CHARACTER VARYING(n), CHAR VARYING(n) VARCHAR?2 (n)

The IBM products SQL/DS, and DB2 datatypes TIME, TIMESTAMPGRAPHIC
VARGRAPHICand LONG VARGRAPHIRave no corresponding Oracle datatype and

3-24 Application Developer's Guide - Fundamentals

Data Conversion

cannot be used. The TIME and TIMESTAMPdatatypes are subcomponents of the
Oracle datatype DATE

Table 3—4 shows the DB2 and SQL/DS conversions.

Table 3-4 SQL/DS, DB2 Datatype Conversions to Oracle Datatypes

DB2 or SQL/DS Datatype Oracle Datatype
CHARACTER (n) CHAR (n)
VARCHAR (n) VARCHAR? (n)
LONG VARCHAR LONG
DECIMAL (p,s) NUMBER (p,s)
INTEGER, SMALLINT NUMBER (38)
FLOAT (p) FLOAT (p)
DATE DATE

Data Conversion

In some cases, Oracle allows data of one datatype where it expects data of a
different datatype. Generally, an expression cannot contain values with different
datatypes. However, Oracle can use the following functions to automatically
convert data to the expected datatype:

. TO_NUMBER()

. TO_CHAR()

. TO_DATE()

. HEXTORAW()

. RAWTOHEX()

. ROWIDTOCHAR()
. CHARTOROWID()

Implicit datatype conversions work according to the rules explained below.

Rule 1: Assignments
For assignments, Oracle can automatically convert the following:

Selecting a Datatype 3-25

Data Conversion

VARCHAR?r CHARlo NUMBER
NUMBERo VARCHAR?2
VARCHAR®r CHARo DATE
DATEto VARCHAR?2
VARCHAR®r CHARio ROWID
ROWIDto VARCHAR?2
VARCHAR®r CHARo HEX
HEXto VARCHAR?2

The assignment succeeds if Oracle can convert the datatype of the value used in the
assignment to that of the assignment’s target.

For the examples in the following list, assume a package with a public variable and
a table declared as in the following statements:

Note: You may need to set up the following data structures for
certain examples to work:

CREATE PACKAGE Test_Pack AS varl CHAR(5); END;
CREATE TABLE Tablel. tab (coll NUMBER);

variable := expression

The datatype of expression must be either the same as, or convertible to, the
datatype of variable. For example, Oracle automatically converts the data
provided in the following assignment within the body of a stored procedure:

VARL =0;

INSERT INTO table VALUES (expressionl , expression2 ,..)

The datatypes of expressionl, expression2, and so on, must be either the same as,
or convertible to, the datatypes of the corresponding columns in table. For
example, Oracle automatically converts the data provided in the following
INSERT statement for TABLE1 (see table definition above):

INSERT INTO Tablel_tab VALUES (19);

UPDATRable SET column = expression

3-26 Application Developer's Guide - Fundamentals

Data Conversion

The datatype of expression must be either the same as, or convertible to, the
datatype of column. For example, Oracle automatically converts the data
provided in the following UPDATEstatement issued against TABLEL

UPDATE Tablel tab SET coll ='30;

« SELECTcolumn INTO variable FROMable

The datatype of column must be either the same as, or convertible to, the
datatype of variable. For example, Oracle automatically converts data selected
from the table before assigning it to the variable in the following statement:

SELECT Col1 INTO Varl FROM Tablel_tab WHERE Col1 = 30;

Rule 2: Expression Evaluation

Caution: You may heed to set up data structures for certain
examples to work:

For expression evaluation, Oracle can automatically perform the same conversions
as for assignments. An expression is converted to a type based on its context. For
example, operands to arithmetic operators are converted to NUMBERNd operands
to string functions are converted to VARCHARZ2

Oracle can automatically convert the following:
« VARCHAR2r CHARio NUMBER
« VARCHAR?r CHARo DATE

Character to NUMBERoNversions succeed only if the character string represents a
valid number. Character to DATEconversions succeed only if the character string
satisfies the session default format, which is specified by the initialization parameter
NLS_DATE_FORMAT

Some common types of expressions follow:
« Simple expressions, such as:

Comm +'500'

« Boolean expressions, such as:
Bonus > Sal/'10'

Selecting a Datatype 3-27

Data Conversion

« Function and procedure calls, such as:
MOD (Counter, '2)

« WHERElause conditions, such as:
WHERE Hiredate = TO_DATE(1997-01-01" yyyy-mm-dd)

« WHERElause conditions, such as:
WHERE Rowid = ' AAAAG0AATAAAADAAA!

In general, Oracle uses the rule for expression evaluation when a datatype
conversion is needed in places not covered by the rule for assignment conversions.
In assignments of the form:

variable := expression

Oracle first evaluates expression using the conversions covered by Rule 2; expression
can be as simple or complex as desired. If it succeeds, then the evaluation of

expression results in a single value and datatype. Then, Oracle tries to assign this
value to the assignment's target using Rule 1.

3-28 Application Developer's Guide - Fundamentals

A

Maintaining Data Integrity

This chapter explains how to enforce the business rules associated with your
database and prevent the entry of invalid information into tables by using integrity
constraints. Topics include the following:

Using Integrity Constraints

Using Referential Integrity Constraints
Referential Integrity in a Distributed Database
Using CHECK Integrity Constraints

Defining Integrity Constraints

Enabling and Disabling Integrity Constraints
Altering Integrity Constraints

Dropping Integrity Constraints

Managing FOREIGN KEY Integrity Constraints

Listing Integrity Constraint Definitions

Maintaining Data Integrity 4-1

Using Integrity Constraints

Using Integrity Constraints

You can define integrity constraints to enforce business rules on data in your tables.
Once an integrity constraint is enabled, all data in the table must conform to the
rule that it specifies. If you subsequently issue a SQL statement that modifies data
in the table, then Oracle ensures that the resulting data satisfies the integrity
constraint. Without integrity constraints, such business rules must be enforced
programmatically by your application.

When to Enforce Business Rules with Integrity Constraints

Enforcing rules with integrity constraints is more reliable than enforcing the
equivalent rules by issuing SQL statements in your application. The semantics of
integrity constraints are very clearly defined, so the internal operations that Oracle
performs to enforce them are optimized beneath the level of SQL statements in
Oracle. Because your applications use SQL, they cannot achieve this level of
optimization.

Example To ensure that each employee in the EMP_TARable works for a
department that is listed in the DEPT_TABtable, first create a PRIMARY KEY
constraint on the DEPTNQ@olumn of the DEPT_TABtable with the following
statement:

ALTER TABLE Dept_tab
ADD PRIMARY KEY (Deptno);

Then create a referential integrity constraint on the DEPTNQ@olumn of the EMP_TAB
table that references the primary key of the DEPT_TABtable. For example:

ALTER TABLE Emp_tab
ADD FOREIGN KEY (Deptno) REFERENCES Dept._tab(Deptno);

If you subsequently add a new employee record to the table, then Oracle
automatically ensures that its department number appears in the department table.

To enforce this rule without integrity constraints, you can use a trigger to test each
new employee record to ensure that its department number belongs to an existing
department. This testing involves issuing a SELECTstatement to query the DEPT_
TABtable. Because SELECTin Oracle uses "consistent read", the query might miss
uncommitted changes from other transactions. Integrity constraints avoid this
problem.

4-2 Application Developer’s Guide - Fundamentals

Using Integrity Constraints

When to Enforce Business Rules in Applications

In some cases, you might want to enforce business rules through your application
as well as through integrity constraints. Enforcing a business rule in your
application might provide faster feedback to the user than an integrity constraint.
For example, if your application accepts 20 values from the user and then issues an
INSERT statement containing these values, then you might want your user to be
notified immediately after entering a value that violates a business rule.

Because integrity constraints are enforced only when a SQL statement is issued, an
integrity constraint can only notify the user of a bad value after the user has entered
all 20 values and the application has issued the INSERT statement. However, you
can design your application to verify the integrity of each value as it is entered, and
notify the user immediately in the event of a bad value.

Creating Indexes for Use with Constraints

All enabled unique and primary keys require indexes, and foreign keys should
almost always be indexed. Although unique and primary keys can create unique
indexes for you, when you need an index for performance reasons, you should not
rely on an index that is automatically created for key columns. Instead, create the
index first, by hand.

Note that:
« Constraints use existing indexes; they do not create indexes unless necessary.

« Unique and primary keys can use non-unique as well as unique indexes. They
can even use just the first few columns of non-unique indexes.

« At most one unique or primary key can use each non-unique index.
« The column orders in the index and the constraint do not need to match.

« If you need to check whether an index is used by a constraint, for example
when you want to drop the index, the object number of the index used by a
unique or primary key constraint is stored in CDEF$.ENABLED for that
constraint. It is not shown in any catalog view.

Using NOT NULL Integrity Constraints

By default, all columns can contain nulls. Only define NOT NULLconstraints for
columns of a table that absolutely require values at all times.

For example, in the EMP_TARBRable, an employee’s manager or hire date might be
temporarily omitted. Some employees might not have a commission. Therefore,

Maintaining Data Integrity 4-3

Using Integrity Constraints

these three columns should not have NOT NULLintegrity constraints. However, an
employee name might be required in each row, making this column a good
candidate for a NOT NULLintegrity constraint.

NOT NULLconstraints are often combined with other types of integrity constraints to
further restrict the values that can exist in specific columns of a table. Use the
combination of NOT NULLand UNIQUEkey integrity constraints to force the input of
values in the UNIQUEKey; this combination of data integrity rules eliminates the
possibility that any new row’s data will ever attempt to conflict with an existing
row’s data.

Because Oracle indexes do not store keys that are all null, if you want to allow
index-only scans of the table or some other operation that requires indexing all
rows, put a NOT NULLconstraint on at least one indexed column.

See Also: "Relationships Between Parent and Child Tables" on
page 4-10
Figure 4-1 NOT NULL Integrity Constraints
The constraint on ENAME is specified by: ALTER TABLE "EMP" MODIFY "ENAME" NOT NULL
Table EMP
EMPNO | ENAME | JOB MGR HIREDATE SAL COMM | DEPTNO
7329 SMITH CEO 17-DEC-85 9,000.00 20
7499 ALLEN VP-SALES | 7329 20-FEB-90 7,500.00 100.00 | 30
7521 WARD MANAGER 7499 22-FEB-90 5,000.00 200.00 | 30
7566 JONES | SALESMAN | 7521 02-APR-90 | 2,975.00 400.00 | 30
| |

NOT NULL Constraint
(no row may contain a null
value for this column)

Setting Default Column Values
Legal default values include any literal, or any expression that does not refer to a

sequence, PL/SQL function, column, LEVEL, ROWNUMr PRIOR Default values can

Absence of NOT NULL Constraint
(any row can contain a null
for this column)

include the expressions SYSDATEUSER USERENMNd UID. The datatype of the
default literal or expression must match or be convertible to the column datatype.

4-4 Application Developer’s Guide - Fundamentals

Using Integrity Constraints

If you do not explicitly define a default value for a column, the default for the
column is implicitly set to NULL

When to Use Default Values

Only assign default values to columns that contain a typical value. For example, in
the DEPT_TABtable, if most departments are located at one site, then the default
value for the LOCcolumn can be set to this value (such as NEW YORK

Defaults are also useful when you use a view to make a subset of a table’s columns
visible. For example, you might allow users to insert rows into a table through a
view. The view is defined to show all columns pertinent to end-user operations;
however, the base table might also have a column named INSERTER not included
in the definition of the view, which logs the user that originally inserts each row of
the table. The column named INSERTERcan record the name of the user that inserts
a row by defining the column with the USERfunction. For example:

.., inserter VARCHAR2(30) DEFAULT USER, ...

See Also: For another example of assigning a default column
value, refer to the section "Creating Tables".

Maintaining Data Integrity 4-5

Using Integrity Constraints

Figure 4-2 A UNIQUE Key Constraint

UNIQUE Key Constraint
(no row may duplicate a
value in the constraint's column)

Table DEPT
DEPNO | DNAME |LOC
20 RESEARCH [DALLAS
30 SALES NEW
40 MARKETING |BOSTON
INSERT
INTO
50 SALES NEW YORK-f This row violates the UNIQUE key constraint,
because "SALES" is already present in another
row; therefore, it is not allowed in the table.
60 BOSTON —f% This row is allowed because a null value is
entered for the DNAME column; however, if a

NOT NULL constraint is also defined on the
DNAME column, this row is not allowed.

Choosing a Table’s Primary Key

Each table can have one primary key. A primary key allows each row in a table to
be uniquely identified and ensures that no duplicate rows exist. Use the following
guidelines when selecting a primary key:

« Whenever practical, use a column containing a sequence number. It is a simple
way to satisfy all the other guidelines.

« Choose a column whose data values are unique.

The purpose of a table’s primary key is to uniquely identify each row of the
table. Therefore, the column or set of columns in the primary key must contain
unique values for each row.

« Choose a column whose data values are never changed.

A primary key value is only used to identify a row in the table; primary key
values should never contain any data that is used for any other purpose.
Therefore, primary key values should rarely need to be changed.

4-6 Application Developer’s Guide - Fundamentals

Using Integrity Constraints

Choose a column that does not contain any nulls.

A PRIMARY KEtonstraint, by definition, does not allow the input of any row
with a null in any column that is part of the primary key.

Choose a column that is short and numeric.

Short primary keys are easy to type. You can use sequence numbers to easily
generate numeric primary keys.

Avoid choosing composite primary keys.

Although composite primary keys are allowed, they do not satisfy the previous
recommendations. For example, composite primary key values are long and
cannot be assigned by sequence numbers.

Using UNIQUE Key Integrity Constraints

Choose unique keys carefully. In many situations, unique keys are incorrectly
comprised of columns that should be part of the table’s primary key (see the
previous section for more information about primary keys). When deciding
whether to use a UNIQUEKey constraint, use the rule that a UNIQUEKkey constraint
is only required to prevent the duplication of the key values within the rows of the
table. The data in a unique key is such that it cannot be duplicated in the table.

Note: Although UNIQUEKey constraints allow the input of nulls,
because of the search mechanism for UNIQUEconstraints on more
than one column, you cannot have identical values in the non-null
columns of a partially null composite UNIQUEKey constraint.

Do not confuse the concept of a unique key with that of a primary key. Primary
keys are used to identify each row of the table uniquely. Therefore, unique keys
should not have the purpose of identifying rows in the table.

Some examples of good unique keys include

An employee’s social security number (the primary key is the employee
number)

A truck’s license plate number (the primary key is the truck number)

A customer’s phone number, consisting of the two columns AREAand PHONE
(the primary key is the customer number)

A department’s name and location (the primary key is the department number)

Maintaining Data Integrity 4-7

Using Referential Integrity Constraints

Using Referential Integrity Constraints

Whenever two tables are related by a common column (or set of columns), define a
PRIMARYor UNIQUEKkey constraint on the column in the parent table, and define a
FOREIGN KEYonstraint on the column in the child table, to maintain the relationship
between the two tables.

See Also: Depending on this relationship, you may want to define
additional integrity constraints including the foreign key, as listed in the
section "Relationships Between Parent and Child Tables" on page 4-10.

Figure 4-3 shows a foreign key defined on the DEPTNQolumn of the EMP_TAB
table. It guarantees that every value in this column must match a value in the
primary key of the DEPT_TABtable (the DEPTNQ@olumn); therefore, no erroneous
department numbers can exist in the DEPTNQ@olumn of the EMP_TARable.

Foreign keys can be comprised of multiple columns. However, a composite foreign
key must reference a composite primary or unique key of the exact same structure
(the same number of columns and datatypes). Because composite primary and
unique keys are limited to 32 columns, a composite foreign key is also limited to 32
columns.

Nulls and Foreign Keys

Foreign keys allow key values that are all null, even if there are no matching
PRIMARYor UNIQUEkeys.

By default (without any NOT NULLor CHECKclauses), and in accordance with the
ANSI/I1SO standard, the FOREIGN KEYonstraint enforces the "match none" rule
for composite foreign keys. The "full" and "partial” rules can also be enforced by
using CHECKand NOT NULLconstraints, as follows:

« To enforce the "match full” rule for nulls in composite foreign keys, which
requires that all components of the key be null or all be non-null, define a
CHECKconstraint that allows only all nulls or all non-nulls in the composite
foreign key as follows, assuming a composite key comprised of columns A, B,
and C:

CHECK ((AISNULL AND B ISNULL AND C IS NULL) OR
(AISNOT NULL AND B IS NOT NULL AND C IS NOT NULL))

« Ingeneral, it is not possible to use declarative referential integrity to enforce the
"match partial" rule for nulls in composite foreign keys, which requires the
non-null portions of the key to appear in the corresponding portions in the

4-8 Application Developer’s Guide - Fundamentals

Using Referential Integrity Constraints

primary or unique key of a single row in the referenced table. You can often use
triggers to handle this case, as described in Chapter 12, "Using Triggers".

Figure 4-3 Referential Integrity Constraints

Parent Key
Primary key of
referenced table
Table DEPT
DEPTNO | DNAME | LOC
20 RESEARCH DALLAS
30 SALES NEW YORK
40 MARKETING | BOSTON Foreign Key
v-.. (values in dependent
.o table must match a value
Referenced or Seell in unique key or primary
Parent Table R key of referenced table)
Table EMP ~“‘~.~_ ‘
EMPNO | ENAME | JOB MGR HIREDATE SAL COMM | DEPTNO
7329 SMITH | CEO 17-DEC-85 | 9,000.00 20
7499 ALLEN | VP-SALES | 7329 20-FEB-90 | 7,500.00 | 100.00 | 30
7521 WARD | MANAGER | 7499 22-FEB-90 | 5,000.00 | 200.00 | 30
7566 JONES | SALESMAN | 7521 02-APR-90 | 2,975.00 | 400.00 | 20 This row violates
the referential
Dependent or Child Table EZQZHS""E'QEO--
is not present
in the referenced
table's primary
INSERT key; therefore,
INTO :
the row is not
allowed in
7571 FORD MANAGER 7499 23-FEB-90 5,000.00 200.00 50 —§ the table.
7571 FORD MANAGER 7499 23-FEB-90 5,000.00 200.00 ——3& Thisrow is
allowed in the
table because a
null value is
entered in the
DEPTNO column;

however, if a not
null constraint is
also defined for
this column, this
row is not allowed.

Maintaining Data Integrity 4-9

Using Referential Integrity Constraints

Relationships Between Parent and Child Tables

Several relationships between parent and child tables can be determined by the
other types of integrity constraints defined on the foreign key in the child table.

No Constraints on the Foreign Key ~ When no other constraints are defined on the
foreign key, any number of rows in the child table can reference the same parent key
value. This model allows nulls in the foreign key.

This model establishes a "one-to-many" relationship between the parent and foreign
keys that allows undetermined values (nulls) in the foreign key. An example of such
a relationship is shown in Figure 4-3 on page 8 between EMP_TABand DEPT_TAB
each department (parent key) has many employees (foreign key), and some
employees might not be in a department (nulls in the foreign key).

NOT NULL Constraint on the Foreign Key ~ When nulls are not allowed in a foreign key,
each row in the child table must explicitly reference a value in the parent key
because nulls are not allowed in the foreign key. However, any number of rows in
the child table can reference the same parent key value.

This model establishes a "one-to-many" relationship between the parent and foreign
keys. However, each row in the child table must have a reference to a parent key
value; the absence of a value (a null) in the foreign key is not allowed. The same
example in the previous section can be used to illustrate such a relationship.
However, in this case, employees must have a reference to a specific department.

UNIQUE Constraint on the Foreign Key ~ When a UNIQUEconstraint is defined on the
foreign key, one row in the child table can reference a parent key value. This model
allows nulls in the foreign key.

This model establishes a "one-to-one" relationship between the parent and foreign
keys that allows undetermined values (nulls) in the foreign key. For example,
assume that the EMP_TARable had a column named MEMBERNG@eferring to an
employee’s membership number in the company’s insurance plan. Also, a table
named INSURANCHas a primary key named MEMBERN@nd other columns of the
table keep respective information relating to an employee’s insurance policy. The
MEMBERNID the EMP_TARable should be both a foreign key and a unique key:

« To enforce referential integrity rules between the EMP_TABand INSURANCE
tables (the FOREIGN KEYconstraint)

« To guarantee that each employee has a unique membership number (the
UNIQUEKkey constraint)

4-10 Application Developer’'s Guide - Fundamentals

Using Referential Integrity Constraints

UNIQUE and NOT NULL Constraints on the Foreign Key ~ When both UNIQUEand NOT
NULL constraints are defined on the foreign key, only one row in the child table can
reference a parent key value. Because nulls are not allowed in the foreign key, each
row in the child table must explicitly reference a value in the parent key.

This model establishes a "one-to-one" relationship between the parent and foreign
keys that does not allow undetermined values (nulls) in the foreign key. If you
expand the previous example by adding a NOT NULLconstraint on the MEMBERNO
column of the EMP_TARable, in addition to guaranteeing that each employee has a
unique membership number, then you also ensure that no undetermined values
(nulls) are allowed in the MEMBERNE&Iumn of the EMP_TARable.

Multiple FOREIGN KEY Constraints

Oracle allows a column to be referenced by multiple FOREIGN KEtonstraints;
effectively, there is no limit on the number of dependent keys. This situation might
be present if a single column is part of two different composite foreign keys.

Deferring Constraint Checks

When Oracle checks a constraint, it signals an error if the constraint is not satisfied.
You can defer checking the validity of constraints until the end of a transaction.

When you issue the SET CONSTRAINTS statement, the SET CONSTRAINTS mode
lasts for the duration of the transaction, or until another SET CONSTRAINTS
statement resets the mode.

Note: You cannot issue a SET CONSTRAINT statement inside a
trigger.

See Also: For more details about the SET CONSTRAINTS statement, see the
Oracle8i SQL Reference.

For general information about constraints, see Oracle8i Concepts.

How To Defer Constraint Checks

Select Appropriate Data You may wish to defer constraint checks on UNIQUE and
FOREIGN keys if the data you are working with has any of the following
characteristics:

« tables are snapshots

Maintaining Data Integrity 4-11

Using Referential Integrity Constraints

« tables that contain a large amount of data being manipulated by another
application, which may or may not return the data in the same order

« update cascade operations on FOREIGN keys

When dealing with bulk data being manipulated by outside applications, you can
defer checking constraints for validity until the end of a transaction.

Ensure Constraints Are Created Deferrable After you have identified and selected the
appropriate tables, make sure the tables’ FOREIGN, UNIQUE and PRIMARY key
constraints are created deferrable. You can do so by issuing a statement similar to
the following:

CREATE TABLE dept (

deptno NUMBER PRIMARY KEY,

dname VARCHAR?2 (30)

)
CREATE TABLE emp (

empno NUMBER,

ename VARCHAR? (30),

deptno NUMBER REFERENCES (dept),

CONSTRAINT epk PRIMARY KEY (empno) DEFERRABLE,

CONSTRAINT efk FOREIGN KEY (deptno)

REFERENCES (dept. deptno) DEFERRABLE);
INSERT INTO dept VALUES (10, 'Accounting);
INSERT INTO dept VALUES (20, 'SALES));
INSERT INTO emp VALUES (1, '‘Corleone’, 10);
INSERT INTO emp VALUES (2, 'Costanza, 20);
COMMIT;

SET CONSTRAINT efk DEFERRED;
UPDATE dept SET deptno = deptno + 10
WHERE deptno = 20;

SELECT *from emp ORDER BY deptno;
EMPNO ENAME DEPTNO
1 Coreone 10
2 Costanza 20
UPDATE emp SET deptno = deptno + 10
WHERE deptno = 20;
SELECT * FROM emp ORDER BY deptno;

EMPNO ENAME DEPTNO

1 Coreone 10
2 Costanza 30
COMMIT;

4-12 Application Developer’'s Guide - Fundamentals

Using Referential Integrity Constraints

Set All Constraints Deferred ~ Within the application being used to manipulate the data,
you must set all constraints deferred before you actually begin processing any data.
Use the following DML statement to set all deferrable constraints deferred:

SET CONSTRAINTS ALL DEFERRED;

Note: The SET CONSTRAINTS statement applies only to the
current transaction. The defaults specified when you create a
constraint remain as long as the constraint exists. The ALTER
SESSION SET CONSTRAINTS statement applies for the current
session only.

Check the Commit (Optional) You can check for constraint violations before committing
by issuing the SET CONSTRAINTS ALL IMMEDIATE statement just before issuing
the COMMIIT. If there are any problems with a constraint, this statement will fail
and the constraint causing the error will be identified. If you commit while
constraints are violated, the transaction will be rolled back and you will receive an
error message.

Managing Constraints That Have Associated Indexes

When you create a UNIQUE or PRIMARY key, Oracle checks to see if an existing
index can be used to enforce uniqueness for the constraint. If there is no such index,
Oracle creates one.

When Oracle is using a unique index to enforce a constraint, and constraints
associated with the unique index are dropped or disabled, the index is dropped.

While enabled foreign keys reference a PRIMARY or UNIQUE key, you cannot
disable or drop the PRIMARY or UNIQUE key constraint or the index.

Note: Deferrable UNIQUE and PRIMARY keys all must use
non-unique indexes.

Concurrency Control, Indexes, and Foreign Keys

You should almost always index foreign keys. The only exception is when the
matching unique or primary key is never updated or deleted.

See Also: Oracle8i Concepts for information on locking mechanisms
involving indexes and keys.

Maintaining Data Integrity 4-13

Referential Integrity in a Distributed Database

Referential Integrity in a Distributed Database

Oracle does not permit declarative referential integrity constraints to be defined
across nodes of a distributed database (in other words, a declarative referential
integrity constraint on one table cannot specify a foreign key that references a
primary or unique key of a remote table).

However, parent/child table relationships across nodes can be maintained using
triggers.

See Also: For more information about triggers that enforce
referential integrity, refer to Chapter 12, "Using Triggers".

Note: If you decide to define referential integrity across the nodes
of a distributed database using triggers, then be aware that network
failures can limit the accessibility of not only the parent table, but
also the child table. For example, assume that the child table is in
the SALESdatabase, and the parent table is in the HQdatabase.

If the network connection between the two databases fails, then
some DML statements against the child table (those that insert rows
into the child table or update a foreign key value in the child table)
cannot proceed, because the referential integrity triggers must have
access to the parent table in the HQdatabase.

4-14 Application Developer’'s Guide - Fundamentals

Using CHECK Integrity Constraints

Using CHECK Integrity Constraints

Use CHECKeonstraints when you need to enforce integrity rules based on logical
expressions, such as comparisons. Never use CHECKconstraints when any of the
other types of integrity constraints can provide the necessary checking.

See Also: "CHECK and NOT NULL Integrity Constraints" on
page 4-16
Examples of CHECKconstraints include the following:

« A CHECKeonstraint on the SAL column of the EMP_TARBRable so that no salary
value is greater than 10000

« A CHECkKeonstraint on the LOCcolumn of the DEPT_TABtable so that only the
locations "BOSTON "NEW YORKand "DALLAS' are allowed

« A CHECKeonstraint on the SAL and COMMolumns to compare the SAL and
COMNMalues of a row and prevent the COMMalue from being greater than the
SAL value

Restrictions on CHECK Constraints

A CHECKintegrity constraint requires that a condition be true or unknown for every
row of the table. If a statement causes the condition to evaluate to false, then the
statement is rolled back. The condition of a CHECkKconstraint has the following
limitations:

« The condition must be a Boolean expression that can be evaluated using the
values in the row being inserted or updated.

« The condition cannot contain subqueries or sequences.

« The condition cannot include the SYSDATEUID, USER or USEREN\SQL
functions.

« The condition cannot contain the pseudocolumns LEVEL, PRIOR or ROWNUM

See Also: Oracle8i SQL Reference for an explanation of these
pseudocolumns.

« The condition cannot contain a user-defined SQL function.

Maintaining Data Integrity 4-15

Using CHECK Integrity Constraints

Designing CHECK Constraints

When using CHECkeconstraints, consider the ANSI/ZISO standard which states that a
CHECKconstraint is violated only if the condition evaluates to false; true and
unknown values do not violate a check condition. Therefore, make sure that any
CHECKconstraint that you define actually enforces the rule you need enforced.

For example, consider the following CHECKconstraint:
CHECK (Sal >0 OR Comm >=0)

At first glance, this rule may be interpreted as "do not allow a row in the EMP_TAB
table unless the employee’s salary is greater than zero or the employee’s
commission is greater than or equal to zero." However, note that if a row is inserted
with a null salary and a negative commission, then the row does not violate the
CHECKeonstraint, because the entire check condition is evaluated as unknown. In
this particular case, you can account for such violations by placing NOT NULL
integrity constraints on both the SAL and COMMolumns.

Note: If you are not sure when unknown values result in NULL
conditions, review the truth tables for the logical operators ANDand
ORin Oracle8i SQL Reference

Multiple CHECK Constraints

A single column can have multiple CHECKeconstraints that reference the column in
its definition. There is no limit to the number of CHECkconstraints that can be
defined that reference a column.

The order in which the constraints are evaluated is not defined, so be careful not to
rely on the order or to define multiple constraints that conflict with each other.

CHECK and NOT NULL Integrity Constraints

According to the ANSI/ZISO standard, a NOT NULLintegrity constraint is an
example of a CHECKintegrity constraint, where the condition is the following:

CHECK (Column_name IS NOT NULL)
Therefore, NOT NULLintegrity constraints for a single column can, in practice, be
written in two forms: using the NOT NULLconstraint or a CHECKconstraint. For ease

of use, you should always choose to define NOT NULLintegrity constraints, instead
of CHECKconstraints with the IS NOT NULLcondition.

4-16 Application Developer’'s Guide - Fundamentals

Defining Integrity Constraints

In the case where a composite key can allow only all nulls or all values, you must
use a CHECKintegrity constraint. For example, the following expression of a CHECK
integrity constraint allows a key value in the composite key made up of columns C1
and C2 to contain either all nulls or all values:

CHECK ((C1 1S NULL AND C2 IS NULL) OR
(C11SNOT NULL AND C2 IS NOT NULL))

Defining Integrity Constraints

Here are some examples showing how to create simple constraints during the
prototype phase of your database design.

Notice how all constraints are given a name. Naming the constraints prevents the
database from creating multiple copies of the same constraint, with different
system-generated names, if the DDL is run multiple times.

See Also: Oracle8i Administrator’s Guide for information on
creating and maintaining constraints for a large production
database.

The CREATE TABLE Command

The following examples of CREATE TABLEtatements show the definition of several
integrity constraints:

CREATE TABLE Dept_tab (
Deptno NUMBER(3) CONSTRAINT Dept_pkey PRIMARY KEY,
Dname VARCHAR2(15),
Loc VARCHAR2(15),
CONSTRAINT Dname_ukey UNIQUE (Dname, Loc),
CONSTRAINT Loc_checkl
CHECK (loc IN (NEW YORK’, ' BOSTON, 'CHICAGO)));

CREATE TABLE Emp_tab (
Empno NUMBER(5) CONSTRAINT Emp_pkey PRIMARY KEY,
Ename VARCHAR2(15)NOT NULL,
Job VARCHAR2(10),
Mgr NUMBER(S) CONSTRAINT Mgr _fkey
REFERENCES Emp_tab,
Hiredate DATE,
Sa NUMBER(7,2),
Comm NUMBER(2),
Depno NUMBER(3) NOT NULL

Maintaining Data Integrity 4-17

Defining Integrity Constraints

CONSTRAINT dept fkey REFERENCES Dept._tab ON DELETE CASCADE);

The ALTER TABLE Command

You can also define integrity constraints using the constraint clause of the ALTER
TABLEcommand. For example, the following examples of ALTER TABLEstatements
show the definition of several integrity constraints:

CREATE UNIQUE INDEX |_dept ON Dept_tab(deptno);
ALTER TABLE Dept_tab
ADD CONSTRAINT Dept_pkey PRIMARY KEY (deptno);

ALTER TABLE Emp_tab
ADD CONSTRAINT Dept_fkey FOREIGN KEY (Deptno) REFERENCES Dept tab;
ALTER TABLE Emp_tab MODIFY (Ename VARCHAR2(15) NOT NULL);

You cannot create a validated constraint on a table if the table already contains any
rows that would violate the constraint.

Required Privileges

The creator of a constraint must have the ability to create tables (the CREATE TABLE
or CREATE ANY TABLEystem privilege), or the ability to alter the table (the ALTER
object privilege for the table or the ALTER ANY TABLEystem privilege) with the
constraint. Additionally, UNIQUEand PRIMARY KEMntegrity constraints require
that the owner of the table have either a quota for the tablespace that contains the
associated index or the UNLIMITED TABLESPACEystem privilege. FOREIGN KEY
integrity constraints also require some additional privileges.

See Also: "Privileges Required for FOREIGN KEY Integrity
Constraints" on page 4-25

Naming Integrity Constraints

Assign names to NOT NULLUNIQUE KEYPRIMARY KEYFOREIGN KEY,and
CHECKeonstraints using the CONSTRAINToption of the constraint clause. This
name must be unique with respect to other constraints that you own. If you do not
specify a constraint name, then one is assigned by Oracle.

Picking your own name makes error messages for constraint violations more
understandable, and prevents the creation of multiple constraints if the SQL
statements are run more than once.

4-18 Application Developer’'s Guide - Fundamentals

Defining Integrity Constraints

See the previous examples of the CREATE TABLENnd ALTER TABLEstatements for
examples of the CONSTRAINToption of the constraint clause. Note that the
name of each constraint is included with other information about the constraint in
the data dictionary.

See Also: "Listing Integrity Constraint Definitions" on page 4-27
for examples of data dictionary views.

Enabling and Disabling Integrity Constraints
This section explains the mechanisms and procedures for manually enabling and
disabling integrity constraints.

enabled constraint When a constraint is enabled, the rule defined by the
constraint is enforced on the data values in the columns that
define the constraint. The definition of the constraint is stored
in the data dictionary.

disabled When a constraint is disabled, the rule defined by the

constraint constraint is not enforced on the data values in the columns
included in the constraint; however, the definition of the
constraint is retained in the data dictionary.

In summary, an integrity constraint can be thought of as a statement about the data
in a database. This statement is always true when the constraint is enabled;
however, the statement may or may not be true when the constraint is disabled
because data in violation of the integrity constraint can be in the database.

Why Disable Constraints?

To enforce the rules defined by integrity constraints, the constraints should always
be enabled; however, in certain situations, it is desirable to disable the integrity
constraints of a table temporarily for performance reasons. For example:

« When loading large amounts of data into a table using SQL*Loader

« When performing batch operations that make massive changes to a table (such
as changing everyone’s employee number by adding 1000 to the existing
number)

« When importing or exporting one table at a time

In cases such as these, integrity constraints may be temporarily turned off to
improve the performance of the operation.

Maintaining Data Integrity 4-19

Defining Integrity Constraints

Integrity Constraint Violations

On Definition

If a row of a table does not adhere to an integrity constraint, then this row is said to
be in violation of the constraint and is known as an exception to the constraint. If any
exceptions exist, then the constraint cannot be enabled. The rows that violate the
constraint must be either updated or deleted in order for the constraint to be
enabled.

Exceptions for a specific integrity constraint can be identified while attempting to
enable the constraint.

See Also: This procedure is discussed in the section "Exception
Reporting".

When you define an integrity constraint in a CREATE TABLEr ALTER TABLE
statement, you can enable the constraint by including the ENABLEclause in its
definition or disable it by including the DISABLE clause in its definition. If neither
the ENABLEnNor the DISABLE clause is included in a constraint’s definition, Oracle
automatically enables the constraint.

Enabling Constraints

The following CREATE TABLENnd ALTER TABLEstatements both define and enable
integrity constraints:

CREATE TABLE Emp_tab (

Empno NUMBER(5) PRIMARY KEY);
ALTER TABLE Emp_tab

ADD PRIMARY KEY (Empno);

An ALTER TABLEstatement that defines and attempts to enable an integrity
constraint may fail because rows of the table may violate the integrity constraint. In
this case, the statement is rolled back and the constraint definition is not stored and
not enabled.

See Also: "Exception Reporting"” on page 4-22 for more
information about rows that violate integrity constraints.

Creating Disabled Constraints

The following CREATE TABLENnd ALTER TABLEstatements both define and
disable integrity constraints:

4-20 Application Developer’'s Guide - Fundamentals

Defining Integrity Constraints

CREATE TABLE Emp_tab (
Empno NUMBER(5) PRIMARY KEY DISABLE);

ALTER TABLE Emp_tab
ADD PRIMARY KEY (Empno) DISABLE;

An ALTER TABLEstatement that defines and disables an integrity constraints never
fails. The definition of the constraint is always allowed because its rule is not
enforced.

Enabling and Disabling Existing Integrity Constraints
Use the ALTER TABLEcommand to

« Enable a disabled constraint, using the ENABLEclause

« Disable an enabled constraint, using the DISABLE clause

Enabling Disabled Constraints

The following statements are examples of statements that enable disabled integrity
constraints:

ALTER TABLE Dept_tab
ENABLE CONSTRAINT Dname_ukey;

ALTER TABLE Dept_tab
ENABLE PRIMARY KEY
ENABLE UNIQUE (Dname)
ENABLE UNIQUE (Loc);

An ALTER TABLEstatement that attempts to enable an integrity constraint fails
when the rows of the table violate the integrity constraint. In this case, the statement
is rolled back and the constraint is not enabled.

See Also: 1"Exception Reporting" on page 4-22 for more
information about rows that violate integrity constraints.

Disabling Enabled Constraints

The following statements are examples of statements that disable enabled integrity
constraints:

ALTER TABLE Dept_tab
DISABLE CONSTRAINT Dname_ukey;,

Maintaining Data Integrity 4-21

Defining Integrity Constraints

ALTER TABLE Dept_tab
DISABLE PRIMARY KEY
DISABLE UNIQUE (Dname)
DISABLE UNIQUE (Loc);

Tip — Using the Data Dictionary for Reference: The example
statements in the previous sections require that you have some
information about a constraint to enable or disable it.

For example, the first statement of each section requires that you
know the constraint’s name, while the second statement of each
section requires that you know the unique key’s column list. If you
do not have such information, then you can query one of the data
dictionary views defined for constraints, USER_CONSTRAINTS or
USER_CONS_COLUMNS; for more information about these views,
see "Listing Integrity Constraint Definitions" on page 4-27 and
Oracle8i Reference.

Enabling and Disabling Key Integrity Constraints

When enabling or disabling UNIQUE PRIMARY KEYand FOREIGN KEMntegrity
constraints, you should be aware of several important issues and prerequisites.
UNIQUEkey and PRIMARY KEYonstraints are usually managed by the database
administrator.

See Also: "Managing FOREIGN KEY Integrity Constraints" on
page 4-25 and the Oracle8i Administrator’s Guide

Exception Reporting

When you issue a CREATE TABLE ENABLE.. or ALTER TABLE. ENABLE..
statement, and the statement is not successfully executed because integrity
constraint exceptions exist, the statement is rolled back and you cannot enable the
constraint until all exceptions to the constraint are either updated or deleted. To
determine which rows violate the integrity constraint, include the EXCEPTIONS
option in the ENABLEclause of a CREATE TABLBr ALTER TABLEstatement.

4-22 Application Developer’'s Guide - Fundamentals

Altering Integrity Constraints

See Also: Oracle8i Administrator’s Guide for more information
about fixing constraint exceptions.

Altering Integrity Constraints

In Oracle 8.0, only certain constraint states could be changed using the ENABLEor
DISABLE clauses. With Oracle 8.1, there are expanded capabilities to alter the state
of an existing constraint with the MODIFY CONSTRAINTtlause.

See Also: For information on the parameters you can modify, see
the ALTER TABLEsection in Oracle8i SQL Reference.

Examples of MODIFY CONSTRAINT

Modify Constraint Example #1
CREATE TABLE X1_tab (a1 NUMBER CONSTRAINT y CHECK (a1>3) DEFERRABLE DISABLE);

ALTER TABLE X1_tab MODIFY CONSTRAINT Y_cnstrt ENABLE;

ALTER TABLE X1_tab MODIFY CONSTRAINT Y_cnstrit RELY;

ALTER TABLE X1._tab MODIFY CONSTRAINT Y_cnstrt INITIALLY DEFERRED;
ALTER TABLE X1_tab MODIFY CONSTRAINT Y_cnstrt ENABLE NOVALIDATE;

Modify Constraint Example #2

CREATE TABLE X1_tab (A1 NUMBER CONSTRAINT Y_cnstrt
NOT NULL DEFERRABLE INITIALLY DEFERRED NORELY DISABLE);

ALTER TABLE X1._tab ADD CONSTRAINT One_cnstrt UNIQUE(AL)
DEFERRABLE INITIALLY IMMEDIATE RELY USING INDEX PCTFREE =30
ENABLE VALIDATE;

ALTER TABLE X1_tab MODIFY UNIQUE(AL)
INITIALLY DEFERRED NORELY USING INDEX PCTFREE =40
ENABLE NOVALIDATE;

ALTER TABLE X1_tab MODIFY CONSTRAINT One_cnstrt
INITIALLY IMMEDIATE RELY;

Modify Constraint Example #3
CREATE TABLE T1_tab (AL INT, BLINT);

Maintaining Data Integrity 4-23

Dropping Integrity Constraints

ALTER TABLE T1_tab add CONSTRAINT P1_cnstit PRIMARY KEY (al) DISABLE;
ALTER TABLE T1_tab MODIFY PRIMARY KEY INITIALLY IMMEDIATE

USING INDEX PCTFREE =30 ENABLE NOVALIDATE;

ALTER TABLE T1_tab MODIFY PRIMARY KEY

USING INDEX PCTFREE =35 ENABLE;

ALTER TABLE T1_tab MODIFY PRIMARY KEY ENABLE NOVALIDATE;

Note: RELYand NORELYare new states that can be set or reset
when a constraint is created or modified.

Dropping Integrity Constraints

Drop an integrity constraint if the rule that it enforces is no longer true or if the
constraint is no longer needed. Drop an integrity constraint using the ALTER
TABLEcommand and the DRORclause. For example, the following statements drop
integrity constraints:

ALTER TABLE Dept_tab
DROP UNIQUE (Dname);

ALTER TABLE Dept_tab
DROP UNIQUE (Loc);

ALTER TABLE Emp_tab
DROP PRIMARY KEY,
DROP CONSTRAINT Dept_fkey;

DROP TABLE Emp_tab CASCADE CONSTRAINTS;

When dropping UNIQUE PRIMARY KEYand FOREIGN KEMntegrity constraints,
you should be aware of several important issues and prerequisites. UNIQUEand
PRIMARY KEonstraints are usually managed by the database administrator.

See Also: "Managing FOREIGN KEY Integrity Constraints” on
page 4-25 and the Oracle8i Administrator’s Guide.

4-24 Application Developer’'s Guide - Fundamentals

Managing FOREIGN KEY Integrity Constraints

Managing FOREIGN KEY Integrity Constraints

General information about defining, enabling, disabling, and dropping all types of
integrity constraints is given in the previous sections. The following section
supplements this information, focusing specifically on issues regarding FOREIGN
KEYintegrity constraints.

Defining FOREIGN KEY Integrity Constraints

The following topics are of interest when defining FOREIGN KEYntegrity
constraints.

Matching of Datatypes

When defining referential integrity constraints, the corresponding column names of
the dependent and referenced tables do not need to match. However, they must be
of the same datatype.

Composite Foreign Keys

Because foreign keys reference primary and unique keys of the parent table, and
PRIMARY KEYand UNIQUEkey constraints are enforced using indexes, composite
foreign keys are limited to 32 columns.

Implied Referencing of a Primary Key

If the column list is not included in the REFERENCESption when defining a
FOREIGN KEYonstraint (single column or composite), then Oracle assumes that
you intend to reference the primary key of the specified table. Alternatively, you can
explicitly specify the column(s) to reference in the parent table within parentheses.
Oracle automatically checks to verify that this column list references a primary or
unique key of the parent table. If it does not, then an informative error is returned.

Privileges Required for FOREIGN KEY Integrity Constraints
To create a FOREIGN KEYonstraint, the creator of the constraint must have
privileged access to both the parent and the child table.

« The Parent Table The creator of the referential integrity constraint must own
the parent table or have REFERENCESbject privileges on the columns that
constitute the parent key of the parent table.

« The Child Table The creator of the referential integrity constraint must have the
ability to create tables (that is, the CREATE TABLEr CREATE ANY TABLE

Maintaining Data Integrity 4-25

Managing FOREIGN KEY Integrity Constraints

system privilege) or the ability to alter the child table (that is, the ALTERobject
privilege for the child table or the ALTER ANY TABLEystem privilege).

In both cases, necessary privileges cannot be obtained via a role; they must be
explicitly granted to the creator of the constraint.

These restrictions allow:

The owner of the child table to explicitly decide what constraints are enforced
on her or his tables and the other users that can create constraints on her or his
tables

The owner of the parent table to explicitly decide if foreign keys can depend on
the primary and unique keys in her tables

Specifying Referential Actions for Foreign Keys

Oracle allows different types of referential integrity actions to be enforced, as
specified with the definition of a FOREIGN KEtonstraint:

The UPDATE/DELETE No Action Restriction This action prevents the update
or deletion of a parent key if there is a row in the child table that references the
key. By default, all FOREIGN KEYtonstraints enforce the no action restriction;
no option needs to be specified when defining the constraint to enforce the no
action restriction. For example:

CREATE TABLE Emp_tab (
FOREIGN KEY (Deptno) REFERENCES Dept _tab);

The ON DELETE CASCADE Action This action allows data that references the
parent key to be deleted (but not updated). If referenced data in the parent key

is deleted, all rows in the child table that depend on the deleted parent key
values are also deleted. To specify this referential action, include the ON DELETE
CASCADBption in the definition of the FOREIGN KEYonstraint. For example:

CREATE TABLE Emp tab (

FOREIGN KEY (Deptno) REFERENCES Dept_tab

ON DELETE CASCADE);

The ON DELETE SET NULL Action This action allows data that references the
parent key to be deleted (but not updated). If referenced data in the parent key
is deleted, all rows in the child table that depend on the deleted parent key
values have their foreign keys set to null. To specify this referential action,
include the ON DELETE SET NULlIloption in the definition of the FOREIGN KEY
constraint. For example:

4-26 Application Developer’'s Guide - Fundamentals

Listing Integrity Constraint Definitions

CREATE TABLE Emp_tab (
FOREIGN KEY (Deptno) REFERENCES Dept_tab
ON DELETE SET NULL);

Enabling FOREIGN KEY Integrity Constraints

FOREIGN KEMntegrity constraints cannot be enabled if the referenced primary or
unique key’s constraint is not present or not enabled.

Listing Integrity Constraint Definitions

Examples

The data dictionary contains the following views that relate to integrity constraints:
« ALL_CONSTRAINTS

« ALL CONS_COLUMNS

« CONSTRAINT_COLUMNS
« CONSTRAINT_DEFS

« USER_CONSTRAINTS

« USER_CONS_COLUMNS
« USER_CROSS_REFS

« DBA_CONSTRAINTS

« DBA_CONS_COLUMNS

. DBA_CROSS REFS

See Also: Refer to Oracle8i Reference for detailed information
about each view.

Consider the following CREATE TABLEtatements that define a number of integrity
constraints:

CREATE TABLE Dept_tab (
Deptno NUMBER(3) PRIMARY KEY,
Dname VARCHAR2(15),
Loc VARCHAR2(15),
CONSTRAINT Dname_ukey UNIQUE (Dname, Loc),
CONSTRAINT LOC_CHECK1
CHECK (Loc IN (NEW YORK', BOSTON', 'CHICAGO)));

Maintaining Data Integrity 4-27

Listing Integrity Constraint Definitions

CREATE TABLE Emp_tab (
Empno NUMBER() PRIMARY KEY,
Ename VARCHAR2(15)NOT NULL,
Job VARCHAR2(10),
Mgr NUMBER() CONSTRAINT Mgr _fkey
REFERENCES Emp_tab ON DELETE CASCADE,
Hiredate DATE,
Sa NUMBER(7,2),
Comm NUMBER(,2),
Deptno NUMBER(3) NOT NULL
CONSTRAINT Dept_fkey REFERENCES Dept_tab);

Example 1: Listing All of Your Accessible Constraints The following query lists all
constraints defined on all tables accessible to the user:

SELECT Constraint_name, Constraint_type, Table_name,
R_constraint_name
FROM User_constraints;

Considering the example statements at the beginning of this section, a list similar to
the one below is returned:

CONSTRAINT_NAME C TABLE_NAME R_CONSTRAINT_NAME

SYS C00275 PDEPT TAB
DNAME_UKEY UDEPT TAB

LOC CHECK1 CDEPT TAB

SYS C00278 CEMP_TAB

SYS C00279 CEMP_TAB

SYS C00280 PEMP_TAB

MGR FKEY REMP_TAB SYS C00280
DEPT FKEY REMP_TAB SYS C00275

Notice the following:

« Some constraint names are user specified (such as DNAME_UKBYwhile others
are system specified (such as SYS_C00275).

« Each constraint type is denoted with a different character in the CONSTRAINT _
TYPEcolumn. The table below summarizes the characters used for each
constraint type.

4-28 Application Developer’'s Guide - Fundamentals

Listing Integrity Constraint Definitions

Constraint Type Character
PRIMARY KEY

UNIQUE KEY U
FOREIGN KEY R
CHECK, NOT NULL C

Note: An additional constraint type is indicated by the character
"V" in the CONSTRAINT_TYPEolumn. This constraint type
corresponds to constraints created by the WITH CHECK OPTIORor
views. See Chapter 2, "Managing Schema Objects" for more
information about views and the WITH CHECK OPTION

Example 2: Distinguishing NOT NULL Constraints from CHECK Constraints In the previous
example, several constraints are listed with a constraint type of "C". To distinguish
which constraints are NOT NULLconstraints and which are CHECKconstraints in the
EMP_TABand DEPT_TABtables, issue the following query:

SELECT Constraint_name, Search_condition
FROM User_constraints
WHERE (Table_name ='DEPT_TAB' OR Table_name ="EMP_TAB) AND
Constraint_type ="C’;

Considering the example CREATE TABLEtatements at the beginning of this
section, a list similar to the one below is returned:

CONSTRAINT_NAME SEARCH_CONDITION

LOC _CHECK1 locIN(NEW YORK,BOSTON, 'CHICAGO)
SYS C00278 ENAMEISNOT NULL
SYS C00279 DEPTNO ISNOT NULL

Notice the following:
« NOT NULLconstraints are clearly identified in the SEARCH_CONDITIONolumn.

« The conditions for user-defined CHECKconstraints are explicitly listed in the
SEARCH_CONDITIONolumn.

Maintaining Data Integrity 4-29

Listing Integrity Constraint Definitions

Example 3: Listing Column Names that Constitute an Integrity Constraint The following
guery lists all columns that constitute the constraints defined on all tables accessible
to you, the user:

SELECT Constraint_name, Table_name, Column_name
FROM User_cons_columns;
Considering the example statements at the beginning of this section, a list similar to
the one below is returned:
CONSTRAINT_NAME TABLE_NAME COLUMN_NAME

DEPT FKEY EMP_TAB DEPTNO
DNAME_UKEY DEPT TAB DNAME
DNAME_UKEY DEPT TAB LOC
LOC CHECK1 DEPT TAB LOC
MGR FKEY EMP TAB MGR
SYS C00275 DEPT TAB DEPTNO
SYS C00278 EMP_TAB ENAME
SYS C00279 EMP_TAB DEPTNO
SYS C00280 EMP_TAB EMPNO

4-30 Application Developer’'s Guide - Fundamentals

D

Selecting an Index Strategy

This chapter discusses the procedures necessary to create and manage the different
types of objects contained in a user’s schema. The topics include:

« Managing Indexes
« Function-Based Indexes
« Managing Clusters, Clustered Tables, and Cluster Indexes

« Managing Hash Clusters and Clustered Tables

See Also: Specific information is described in the following
locations:

« Procedures, functions, and packages — Chapter 9

« Object types — Oracle8i Application Developer’s Guide -
Object-Relational Features

« Dependency information — Chapter 9

« Ifyou use symmetric replication, then see Oracle8i Replication
for information on managing schema objects, such as
snapshots.

Managing Indexes

Indexes are used in Oracle to provide quick access to rows in a table. Indexes
provide faster access to data for operations that return a small portion of a table’s
rows.

Selecting an Index Strategy 5-1

Managing Indexes

Oracle does not limit the number of indexes you can create on a table. However,
you should consider the performance benefits of indexes and the needs of your
database applications to determine which columns to index.

The following sections explain how to create, alter, and drop indexes using SQL
commands. Some simple guidelines to follow when managing indexes are included.

See Also: See Oracle8i Designing and Tuning for Performance for
performance implications of index creation.

Create Indexes After Inserting Table Data

With one notable exception, you should usually create indexes after you have
inserted or loaded (using SQL*Loader or Import) data into a table. It is more
efficient to insert rows of data into a table that has no indexes and create the indexes
later. If you create indexes before table data is loaded, then every index must be
updated every time you insert a row into the table. The exception to this rule is that
you must create an index for a cluster before you insert any data into the cluster.

When you create an index on a table that already has data, Oracle must use sort
space to create the index. Oracle uses the sort space in memory allocated for the
creator of the index (the amount per user is determined by the initialization
parameter SORT_AREA_SIZE, but must also swap sort information to and from
temporary segments allocated on behalf of the index creation. If the index is
extremely large, it might be beneficial to complete the following steps:

1. Create a new temporary tablespace using the CREATE TABLESPACEommand.

2. Use the TEMPORARY TABLESPACBption of the ALTER USERcommand to
make this your new temporary tablespace.

3. Create the index using the CREATE INDEXcommand.

4. Drop this tablespace using the DROP TABLESPACEommand. Then use the
ALTER USERcommand to reset your temporary tablespace to your original
temporary tablespace.

Under certain conditions, you can load data into a table with the SQL*Loader
"direct path load", and an index can be created as data is loaded.

See Also: Oracle8i Utilities

Index the Correct Tables and Columns ~ Use the following guidelines for determining
when to create an index:

5-2 Application Developer's Guide - Fundamentals

Managing Indexes

Create an index if you frequently want to retrieve less than 15% of the rows in a
large table. The percentage varies greatly according to the relative speed of a
table scan and how clustered the row data is about the index key. The faster the
table scan, the lower the percentage; the more clustered the row data, the higher
the percentage.

Index columns used for joins to improve performance on joins of multiple
tables.

See Also: Primary and unique keys automatically have indexes,
but you might want to create an index on a foreign key; see
Chapter 4, "Maintaining Data Integrity" for more information.

Small tables do not require indexes; if a query is taking too long, then the table
might have grown from small to large.

Some columns are strong candidates for indexing. Columns with one or more of the
following characteristics are candidates for indexing:

Values are relatively unique in the column.
There is a wide range of values.

The column contains many nulls, but queries often select all rows having a
value. In this case, the following phrase:

WHERE COL_X >-9.99 *power(10,125)

is preferable to
WHERE COL_X IS NOT NULL

This is because the first uses an index on COL_X(assuming that COL_Xis a
numeric column).

Columns with the following characteristics are less suitable for indexing:

The column has few distinct values (for example, a column for the sex of
employees).

There are many nulls in the column and you do not search on the non-null
values.

LONGand LONG RAWbIumns cannot be indexed.

The size of a single index entry cannot exceed roughly one-half (minus some
overhead) of the available space in the data block. Consult with the database
administrator for assistance in determining the space required by an index.

Selecting an Index Strategy 5-3

Managing Indexes

Limit the Number of Indexes per Table A table can have any number of indexes.
However, the more indexes, the more overhead is incurred as the table is altered.
When rows are inserted or deleted, all indexes on the table must be updated. When
a column is updated, all indexes on the column must be updated.

Thus, there is a trade-off between speed of retrieval for queries on a table and speed
of accomplishing updates on the table. For example, if a table is primarily read-only,
then more indexes might be useful; but, if a table is heavily updated, then fewer
indexes might be preferable.

Order Index Columns for Performance The order in which columns are named in the
CREATE INDEXommand does not need to correspond to the order in which they
appear in the table. However, the order of columns in the CREATE INDEXtatement
is significant because query performance can be affected by the order chosen. In
general, you should put the column expected to be used most often first in the
index.

For example, assume the columns of the VENDOR_PART®ble are as shown in
Figure 5-1.

Figure 5-1 The VENDOR_PARTS Table

Table VENDOR_PARTS
VEND ID | PART NO | UNIT COST

1012 10-440 .25
1012 10441 .39
1012 457 4.95
1010 10-440 .27
1010 457 5.10

1220 08-300 1.33
1012 08-300 1.19
1292 457 5.28

Assume that there are five vendors, and each vendor has about 1000 parts.

Suppose that the VENDOR_PART®ble is commonly queried by SQL statements
such as the following:

SELECT * FROM vendor_parts
WHERE part_no =457 AND vendor_id =1012,

To increase the performance of such queries, you might create a composite index
putting the most selective column first; that is, the column with the most values:

5-4 Application Developer’'s Guide - Fundamentals

Managing Indexes

CREATE INDEX ind_vendor_id
ON vendor_parts (part_no, vendor_id);

Indexes speed retrieval on any query using the leading portion of the index. So in the
above example, queries with WHERI[Elauses using only the PART_NQolumn also
note a performance gain. Because there are only five distinct values, placing a
separate index on VENDOR_IDwould serve no purpose.

Creating Indexes

You can create an index for a table to improve the performance of queries issued
against the corresponding table. You can also create an index for a cluster. You can
create a composite index on multiple columns up to a maximum of 32 columns. A
composite index key cannot exceed roughly one-half (minus some overhead) of the
available space in the data block.

Oracle automatically creates an index to enforce a UNIQUEor PRIMARY KEY
integrity constraint. In general, it is better to create such constraints to enforce
uniqueness and not explicitly use the obsolete CREATE UNIQUE INDEXyntax.

Use the SQL command CREATE INDEXo create an index. The following statement
CREATE INDEX emp_ename ON Emp_tab(ename)
TABLESPACE users
STORAGE (INITIAL 20K
NEXT 20k
PCTINCREASE 75)
PCTFREE O

Notice that several storage settings are explicitly specified for the index.

Privileges Required to Create an Index

To create a new index, you must own, or have the INDEX object privilege for, the
corresponding table. The schema that contains the index must also have a quota for
the tablespace intended to contain the index, or the UNLIMITED TABLESPACE
system privilege. To create an index in another user’s schema, you must have the
CREATE ANY INDEXystem privilege.

Dropping Indexes
You might drop an index for the following reasons:

Selecting an Index Strategy 5-5

Function-Based Indexes

« Theindex is not providing anticipated performance improvements for queries
issued against the associated table (the table is very small, or there are many
rows in the table but very few index entries, etc.).

« Applications do not contain queries that use the index.
« Theindex is no longer needed and must be dropped before being rebuilt.

When you drop an index, all extents of the index’s segment are returned to the
containing tablespace and become available for other objects in the tablespace.

Use the SQL command DROP INDEXo drop an index. For example, to drop the
EMP_ENAMIhdex, enter the following statement:

DROP INDEX Emp_ename;
If you drop a table, then all associated indexes are dropped.

Privileges Required to Drop an Index ~ To drop an index, the index must be contained in
your schema or you must have the DROP ANY INDEXystem privilege.

Function-Based Indexes

A function-based index is an index built on an expression. It extends your indexing
capabilities beyond indexing on a column. A function-based index increases the
variety of ways in which you can access data.

Note: You can create function-based indexes only if you are using
the Oracle8i release, or higher.

The expression used in a function-based index can be an arithmetic expression or an
expression that contains a PL/SQL function, package function, C callout, or SQL
function. Function-based indexes also support linguistic sorts based on linguistic
sort keys (collation), efficient linguistic collation of SQL statements, and
case-insensitive sorts.

Like other indexes, function-based indexes improve query performance. For
example, if you need to access a computationally complex expression often, then
you can store it in an index. Then when you need to access the expression, it is
already computed. You can find a detailed description of the advantages of
function-based indexes in "Using Function-Based Indexes" on page 5-7.

5-6 Application Developer’'s Guide - Fundamentals

Function-Based Indexes

Function-based indexes have all of the same properties as indexes on columns.
However, unlike indexes on columns which can be used by both cost-based and
rule-based optimization, function-based indexes can be used by only by cost-based
optimization. Other restrictions on function-based indexes are described in
"Requirements and Restrictions for Function-Based Indexes” on page 5-12.

See Also: For more information on function-based indexes, see
Oracle8i Concepts. For information on creating function-based
indexes, see Oracle8i Administrator’s Guide.

Using Function-Based Indexes

The following list describes the advantages of function-based indexes in greater
detail:

Increase the number of situations where the optimizer can perform a range
scan instead of a full table scan. For example: consider the expression in the
WHERElause below:

CREATE INDEX ldx ON Example_tab(Column_a + Column_b);
SELECT * FROM Example_tab WHERE Column_a + Column_b <10;

In the CREATE INDEXtatement, idx is the name of the index, Example_tab is
the name of the table, and column_a and column_b represent columns. The
optimizer can use a range scan for this query because the index is built on
(column_a + column_b). Range scans typically produce fast response times if
the predicate has low selectivity (that is, if the predicate selects less than 15% of
the rows of a large table). In addition, the optimizer can estimate selectivity of
predicates involving expressions more accurately if the expressions are
materialized in a function-based index (expressions of function-based indexes
are represented as virtual columns and ANALYZEcan build histograms on such
columns).

Precompute the value of a computationally intensive function and store it in
the index. If you have a computationally intensive expression that you access
often, then you can store it in an index. When you need to access it, the value is
already computed. This can greatly improve query execution performance.

Create indexes on object columns and REF columns. Methods that describe
objects can be used as functions on which to build indexes. For example, you
can use the MAPmethod to build indexes on an object type column.

Selecting an Index Strategy 5-7

Function-Based Indexes

« Create more powerful sorts. You can perform case-insensitive sorts with the
UPPERand LOWERunctions, descending order sorts with the DESCkeyword,
and linguistic-based sorts with the NLSSORTfunction.

Note: The DESCkeyword in the CREATE INDEXtatement is no
longer ignored. Oracle sorts columns with the DESCkeyword in
descending order. Such indexes are treated as function-based
indexes. Descending indexes cannot be bitmapped or reverse, and
cannot be used in bitmapped optimizations. To get the pre-Oracle
8.1 release DESCfunctionality, remove the DESCkeyword from the
CREATE INDEXtatement.

See Also: For examples of how to use function-based indexes, see
the Oracle8i Administrator’s Guide.

Example

As an example, consider a weather research institute that maintains tables of
weather data for various cities. Some of their projects include tracking daily
temperature fluctuations throughout the year. Other projects include tracking
fluctuations as a function of the city’s distance from the equator. By building
indexes on the complex functions that they want to calculate, the institute can
optimize the execution of the queries they submit. The following section contains
examples of indexes that could be created and the queries that could use them.

The table, Weatherdata_tab , contains columns for the minimum daily
temperature (Mintemp), maximum daily temperature (Maxtemp), the day the
temperature was recorded (Day), and the Region (Region_Obj). Region_Obj is
an object column that contains columns for country (Country) and city
(Cityname). Figure 5-2 illustrates the Weatherdata_tab schema.

5-8 Application Developer’'s Guide - Fundamentals

Function-Based Indexes

Figure 5-2 WEATHERDATA_TAB Schema Design

Column Name Kind of Data

Table WEATHERDATA_TAB

- DAY MAXTEMP | MINTEMP | REGION_OBJ

Date Number Number Object_Type

DATE NUMBER | NUMBER | REGION_TYP —
I’- PK |

I

Key Column Objectof ~ TYP€

the defined type

!
Column Object REGION_OBJ (of REGION_TYP)

CITYNAME | COUNTRY
Text Text
VARCHAR2(30) | VARCHAR2(30)

An index is created that calculates the difference in temperature for the cities in the

tables. A query that could use the delta_index

table for temperature differences less than 20:

index returns the contents of the

Note: You may need to set up data structures similar to the
following for certain examples to work:

CREATE OR REPLACE FUNCTION distance_from_equator(input
NUMBER) RETURN NUMBER DETERMINISTIC IS
distance NUMBER;

BEGIN

distance := 100000;
RETURN (distance);

END;

CREATE INDEX Delta_index
ON Weatherdata._tab (Maxtemp - Mintemp);

Selecting an Index Strategy 5-9

Function-Based Indexes

SELECT*
FROM Weatherdata_tab
WHERE (Maxtemp - Mintemp) <'20';

An index is created that calls the object method distance_from_equator to
calculate the distance from the equator for each city in the table. The method is
applied to the object column Region_Obj . A query that could use the distance_
index index returns the names of the cities that are at a distance greater than 1000
miles from the equator:

CREATE INDEX Distance_index
ON Weatherdata._tab (Distance_from_equator (Reg_obj));

SELECT*
FROM Weatherdata_tab
WHERE (Distance_from_equator (Reg_Ohj)) >"1000’;

An index is created that satisfies the queries of German-speaking users that sorts
temperature data by city name. A query that could use the City_index index
returns the contents of the table, ordered by city name. The German sort order for
city name is used. Note that in the SELECTstatement, a WHERElause is not needed.
This is because in a German session, NLS_SORTis set to German and NLS_COMHRs
set to ANSI.

CREATE INDEX City_index
ON Weatherdata._tab (NLSSORT(Cityname, 'NLS _SORT=Germar));

SELECT*
FROM Weatherdata._tab WHERE Cityname IS NOT NULL
ORDER BY Cityname;

An index is created on the difference between the maximum and minimum
temperatures, and on the maximum temperature. The result of the difference is
sorted in descending order. A query that could use the compare_index index
returns the contents of the table that satisfy the condition where the difference is
less than 20 and the maximum temperature is greater than 75.

CREATE INDEX compare_index
ON Weatherdata_tab ((Maxtemp - Mintemp) DESC, Maxtemp);

SELECT*
FROM Weatherdata._tab WHERE ((Maxtemp - Mintemp) <’20' AND Maxtemp > '75);

5-10 Application Developer's Guide - Fundamentals

Function-Based Indexes

Example Function-Based Indexes

Example 1:
The following command creates a function-based index IDX on table EMP_TABfor
efficient case-insensitive searches.

CREATE INDEX Idx ON Emp_tab (UPPER(Ename));

The SELECTcommand uses the function-based index on UPPERe_name) to return
all of the employees with name like :KEYCOL

SELECT*
FROM Emp_tab
WHERE UPPER(Ename) ike :KEYCOL;

Example 2:

The following command creates a function-based index IDX on table Fbi_tab where
A, B, and C represent columns.

CREATE INDEX Idx
OnFbi tab(A+B*(C-1),A B),

The SELECTstatement can either use index range scan (notice that the expression is
a prefix of index IDX) or index fast full scan (which may be preferable if the index
has specified a high parallel degree).

SELECT a
FROM Fbi_tab

Where A+B*(C-1)<100;

Example 3:

This example demonstrates how a function-based index can be used to support an
NLS Sort Index. Given a string, the NLSSORTunction returns a sort key. The
following CREATE INDEXtatement creates an NLS_SORTsort on table NLS_TAB
with collation sequence GERMAN

CREATE INDEX NIs_index

ON Nis_tab (NLSSORT(Name, NLS_SORT = German));

The SELECTstatement selects all of the contents of the table and orders it by NAME
The rows are ordered using the German collation sequence.

SELECT*

Selecting an Index Strategy 5-11

Function-Based Indexes

FROM NIs_tab WHERE Name IS NOT NULL
ORDER BY Name;

Requirements and Restrictions for Function-Based Indexes
Note the following requirements and restrictions for function-based indexes:

« Only cost-based optimization can use function-based indexes.

« A PL/SQL function, either a top level function or a package-level function,
used in the index expression must be declared as DETERMINISTIC. There is no
error checking whether or not a subprogram is qualified as DETERMINISTIC.
You must ensure that the subprogram is DETERMINISTIC.

The following semantic rules demonstrate how to use the keyword
DETERMINISTIC:

« Atop level subprogram can be declared as DETERMINISTIC.

« A PACKAGHevel subprogram can be declared as DETERMINISTIC in the
PACKAGEpecification but not in the PACKAGE BODEFfrrors are raised if
DETERMINISTIC is used inside a PACKAGE BODY

« A private subprogram (declared inside another subprogram or a PACKAGE
BODY cannot be declared as DETERMINISTIC.

« A DETERMINISTIC subprogram can call another subprogram whether the
called program is declared as DETERMINISTIC or not.

« Function-based indexes cannot be built on LOBcolumns, nested tables, or
varrays.

« Expressions used in a function-based index should reference only columns in a
row in the table. Hence, these expressions cannot contain any aggregate
functions.

= You must have the initialization parameters COMPATIBLE set to 8.1.0.0.0 or
higher, QUERY_REWRITE_ENABLED=TRUE, and QUERY_REWRITE_
INTEGRITY=TRUSTED.

= You must analyze the table or index before the index is used.
« Bitmap optimizations cannot used descending indexes.
« Function-based indexes are not used when OR-expansion is done.

« The index function cannot be marked NOT NULL. To avoid a full table scan,
you must ensure that the query cannot fetch null values.

5-12 Application Developer's Guide - Fundamentals

Function-Based Indexes

Function-based indexes that return VARCHAR®r RAWldata types from a
PL/SQL function are not permitted due to length restrictions. A possible work
around is to use substrings to limit the size of the function’s output. For
example:

Note: You may need to set up data structures similar to the
following for certain examples to work:

CREATE OR REPLACE FUNCTION x(input IN VARCHAR2)
RETURN VARCHAR2 AS
output VARCHAR2(12);
BEGIN
output :=input;
RETURN (outpui);
END;

SELECT SUBSTR(x(hell0),1,100) FROM DUAL;

SUBSTR (F(X), 1, 100)

Where F(X) represents the PL/SQL function. The SUBSTRcommand would
need to be used for the function when creating the index and when referencing
the function in queries.

Selecting an Index Strategy 5-13

Managing Clusters, Clustered Tables, and Cluster Indexes

Managing Clusters, Clustered Tables, and Cluster Indexes

Because clusters store related rows of different tables together in the same data
blocks, two primary benefits are achieved when clusters are properly used:

« Disk I/0 is reduced and access time improves for joins of clustered tables.

« Inacluster, a cluster key value (the related value) is only stored once, no matter
how many rows of different tables contain the value. Therefore, less storage
may be required to store related table data in a cluster than is necessary in
non-clustered table format.

Guidelines for Creating Clusters
Some guidelines for creating clusters are outlined below.

See Also: For performance characteristics, see Oracle8i Designing
and Tuning for Performance.

Choose Appropriate Tables to Cluster ~ Use clusters to store one or more tables that are
primarily queried (not predominantly inserted into or updated), and for which
gueries often join data of multiple tables in the cluster or retrieve related data from
asingle table.

Choose Appropriate Columns for the Cluster Key Choose cluster key columns carefully. If
multiple columns are used in queries that join the tables, then make the cluster key
a composite key. In general, the same column characteristics that make a good index
apply for cluster indexes.

See Also: "Index the Correct Tables and Columns" on page 5-2
has more information about these guidelines.

A good cluster key has enough unique values so that the group of rows
corresponding to each key value fills approximately one data block. Too few rows
per cluster key value can waste space and result in negligible performance gains.
Cluster keys that are so specific that only a few rows share a common value can
cause wasted space in blocks, unless a small SIZE was specified at cluster creation
time.

Too many rows per cluster key value can cause extra searching to find rows for that
key. Cluster keys on values that are too general (for example, MALEand FEMALE
result in excessive searching and can result in worse performance than with no
clustering.

5-14 Application Developer's Guide - Fundamentals

Managing Clusters, Clustered Tables, and Cluster Indexes

A cluster index cannot be unique or include a column defined as LONG

Performance Considerations

Also note that clusters can reduce the performance of DML statements (INSERTS,
UPDATE, and DELETE) as compared to storing a table separately with its own
index. These disadvantages relate to the use of space and the number of blocks that
must be visited to scan a table. Because multiple tables share each block, more
blocks must be used to store a clustered table than if that same table were stored
non-clustered. You should decide about using clusters with these trade-offs in
mind.

To identify data that would be better stored in clustered form than in non-clustered
form, look for tables that are related via referential integrity constraints, and tables
that are frequently accessed together using SELECTstatements that join data from
two or more tables. If you cluster tables on the columns used to join table data, then
you reduce the number of data blocks that must be accessed to process the query;
all the rows needed for a join on a cluster key are in the same block. Therefore,
guery performance for joins is improved.

Similarly, it may be useful to cluster an individual table. For example, the EMP_TAB
table could be clustered on the DEPTNQolumn to cluster the rows for employees in
the same department. This would be advantageous if applications commonly
process rows, department by department.

Like indexes, clusters do not affect application design. The existence of a cluster is
transparent to users and to applications. Data stored in a clustered table is accessed
via SQL just like data stored in a non-clustered table.

Creating Clusters, Clustered Tables, and Cluster Indexes

Use a cluster to store one or more tables that are frequently joined in queries. Do not
use a cluster to cluster tables that are frequently accessed individually.

Once you create a cluster, tables can be created in the cluster. However, before you
can insert any rows into the clustered tables, you must create a cluster index. The
use of clusters does not affect the creation of additional indexes on the clustered
tables; you can create and drop them as usual.

Use the SQL command CREATE CLUSTER create a cluster. The following
statement creates a cluster named EMP_DEP;Twhich stores the EMP_TABand DEPT _
TABtables, clustered by the DEPTNColumn:

CREATE CLUSTER Emp_dept (Deptno NUMBER(3))

Selecting an Index Strategy 5-15

Managing Clusters, Clustered Tables, and Cluster Indexes

PCTUSED 80
PCTFREES;

Create a table in a cluster using the SQL command CREATE TABLERvith the
CLUSTERoption. For example, the EMP_TABand DEPT_TABtables can be created in
the EMP_DEPTIuster using the following statements:

CREATE TABLE Dept_tab (
Deptno NUMBER(3) PRIMARY KEY,
n)

CLUSTER Emp_dept (Deptno);

CREATE TABLE Emp tab
Empno NUMBER(5) PRIMARY KEY,
Ename VARCHAR2(15) NOT NULL,

Deptno NUMBER(3) REFERENCES Dept_tab)
CLUSTER Emp_dept (Deptno);

A table created in a cluster is contained in the schema specified in the CREATE
TABLE statement; a clustered table might not be in the same schema that contains
the cluster.

You must create a cluster index before any rows can be inserted into any clustered
table. For example, the following statement creates a cluster index for the EMP_
DEPTcluster:

CREATE INDEX Emp_dept_index
ON CLUSTER Emp_dept
INITRANS 2
MAXTRANS 5
PCTFREE 5;

Note: A cluster index cannot be unique. Furthermore, Oracle is
not guaranteed to enforce uniqueness of columns in the cluster key
if they have UNIQUEor PRIMARY KEonstraints.

The cluster key establishes the relationship of the tables in the cluster.
Privileges Required to Create a Cluster, Clustered Table, and Cluster Index

To create a cluster in your schema, you must have the CREATE CLUSTERystem
privilege and a quota for the tablespace intended to contain the cluster or the

5-16 Application Developer's Guide - Fundamentals

Managing Clusters, Clustered Tables, and Cluster Indexes

UNLIMITED TABLESPACEYystem privilege. To create a cluster in another user’s
schema, you must have the CREATE ANY CLUSTEdstem privilege, and the owner
must have a quota for the tablespace intended to contain the cluster or the
UNLIMITED TABLESPACHEYystem privilege.

To create a table in a cluster, you must have either the CREATE TABLEr CREATE
ANY TABLEsystem privilege. You do not need a tablespace quota or the UNLIMITED
TABLESPACEYystem privilege to create a table in a cluster.

To create a cluster index, your schema must contain the cluster, and you must have
the following privileges:

« The CREATE ANY INDEXystem privilege or, if you own the cluster, the CREATE
INDEX privilege

« A quota for the tablespace intended to contain the cluster index, or the
UNLIMITED TABLESPACEYystem privilege

Manually Allocating Storage for a Cluster

Oracle dynamically allocates additional extents for the data segment of a cluster, as
required. In some circumstances, you might want to explicitly allocate an additional
extent for a cluster. For example, when using the Oracle Parallel Server, an extent of
a cluster can be allocated explicitly for a specific instance.

You can allocate a new extent for a cluster using the SQL command ALTER
CLUSTERwith the ALLOCATE EXTEN®ption.

See Also: Oracle8i Parallel Server Documentation Set: Oracle8i
Parallel Server Concepts; Oracle8i Parallel Server Setup and
Configuration Guide; Oracle8i Parallel Server Administration,
Deployment, and Performance

Dropping Clusters, Clustered Tables, and Cluster Indexes

Drop a cluster if the tables currently within the cluster are no longer necessary.
When you drop a cluster, the tables within the cluster and the corresponding cluster
index are dropped; all extents belonging to both the cluster’s data segment and the
index segment of the cluster index are returned to the containing tablespace and
become available for other segments within the tablespace.

You can individually drop clustered tables without affecting the table’s cluster,
other clustered tables, or the cluster index. Drop a clustered table in the same
manner as a non-clustered table—use the SQL command DROP TABLE

Selecting an Index Strategy 5-17

Managing Clusters, Clustered Tables, and Cluster Indexes

See "Dropping Tables" for more information about individually dropping tables.

Note: When you drop a single clustered table from a cluster, each
row of the table must be deleted from the cluster. To maximize
efficiency, if you intend to drop the entire cluster including all
tables, then use the DROP CLUSTEBommand with the INCLUDING
TABLESoption.

You should only use the DROP TABLEommand to drop an
individual table from a cluster when the rest of the cluster is going
to remain.

You can drop a cluster index without affecting the cluster or its clustered tables.
However, you cannot use a clustered table if it does not have a cluster index.
Cluster indexes are sometimes dropped as part of the procedure to rebuild a
fragmented cluster index.

See Also: "Dropping Indexes" on page 5-5

To drop a cluster that contains no tables, as well as its cluster index, if present, use
the SQL command DROP CLUSTERor example, the following statement drops the
empty cluster named EMP_DEPT

DROP CLUSTER Emp_dept;
If the cluster contains one or more clustered tables, and if you intend to drop the

tables as well, then add the INCLUDING TABLESoption of the DROP CLUSTER
command. For example:

DROP CLUSTER Emp_dept INCLUDING TABLES;
If you do not include the INCLUDING TABLESoption, and if the cluster contains
tables, then an error is returned.

If one or more tables in a cluster contain primary or unique keys that are referenced
by FOREIGN KEYtonstraints of tables outside the cluster, then you cannot drop the
cluster unless you also drop the dependent FOREIGN KEYconstraints. Use the
CASCADE CONSTRAINTgption of the DROP CLUSTEBommand, as in

DROP CLUSTER Emp_dept INCLUDING TABLES CASCADE CONSTRAINTS;

An error is returned if the above option is not used in the appropriate situation.

5-18 Application Developer's Guide - Fundamentals

Managing Hash Clusters and Clustered Tables

Privileges Required to Drop a Cluster

To drop a cluster, your schema must contain the cluster, or you must have the DROP
ANY CLUSTERystem privilege. You do not have to have any special privileges to
drop a cluster that contains tables, even if the clustered tables are not owned by the
owner of the cluster.

Managing Hash Clusters and Clustered Tables

The following sections explain how to create, alter, and drop hash clusters and
clustered tables using SQL commands.

Creating Hash Clusters and Clustered Tables

A hash cluster is used to store individual tables or a group of clustered tables that
are static and often queried by equality queries. Once you create a hash cluster, you
can create tables. To create a hash cluster, use the SQL command CREATE CLUSTER
The following statement creates a cluster named TRIAL_CLUSTERthat is used to
store the TRIAL_TAB table, clustered by the TRIALNO column:

Note: You may need to use a setup similar to the following for
certain examples to work:

ALTER TABLESPACE SYSTEM ADD DATAFILE 'disk1:moredatal’ SIZE 50K
AUTOEXTEND ON;

CREATE CLUSTER Trial_cluster (
Trialno NUMBER(5,0))
PCTUSED 80
PCTFREE5
SIZE 2K
HASH IS Trialno HASHKEY'S 100000;

CREATE TABLE Trial _tab (
Trialno NUMBER(5) PRIMARY KEY,

)
CLUSTER Trial_cluster (Trialno);

Selecting an Index Strategy 5-19

Managing Hash Clusters and Clustered Tables

Controlling Space Usage Within a Hash Cluster

When you create a hash cluster, it is important that you correctly choose the cluster
key and set the HASH IS, SIZE , and HASHKEY $arameters to achieve the desired
performance and space usage for the cluster. The following sections provide
guidance, as well as examples of setting these parameters.

Choosing the Key

Choosing the correct cluster key is dependent on the most common types of queries
issued against the clustered tables. For example, consider the EMP_TARable in a
hash cluster. If queries often select rows by employee number, then the EMPNO
column should be the cluster key; if queries often select rows by department
number, then the DEPTNQolumn should be the cluster key. For hash clusters that
contain a single table, the cluster key is typically the entire primary key of the
contained table. A hash cluster with a composite key must use Oracle’s internal
hash function.

Setting HASH IS

Only specify the HASH IS parameter if the cluster key is a single column of the
NUMBERIatatype and contains uniformly distributed integers. If the above
conditions apply, then you can distribute rows in the cluster such that each unique
cluster key value hashes to a unique hash value (with no collisions). If the above
conditions do not apply, you should use the internal hash function.

Dropping Hash Clusters
Drop a hash cluster using the SQL command DROP CLUSTER

DROP CLUSTER Emp_dept;

Drop a table in a hash cluster using the SQL command DROP TABLEThe
implications of dropping hash clusters and tables in hash clusters are the same as
for index clusters.

See Also: "Dropping Clusters, Clustered Tables, and Cluster
Indexes" on page 5-17

When to Use Hashing

Storing a table in a hash cluster is an alternative to storing the same table with an
index. Hashing is useful in the following situations:

5-20 Application Developer's Guide - Fundamentals

Managing Hash Clusters and Clustered Tables

Most queries are equality queries on the cluster key. For example:
SELECT...WHERE Cluster_key=...;

In such cases, the cluster key in the equality condition is hashed, and the
corresponding hash key is usually found with a single read. With an indexed
table, the key value must first be found in the index (usually several reads), and
then the row is read from the table (another read).

The table or tables in the hash cluster are primarily static in size such that you
can determine the number of rows and amount of space required for the tables
in the cluster. If tables in a hash cluster require more space than the initial
allocation for the cluster, then performance degradation can be substantial
because overflow blocks are required.

A hash cluster with the HASH IS col, HASHKEY), and SIZE m clauses is an
ideal representation for an array (table) of n items (rows) where each item
consists of m bytes of data. For example:

ARRAY X[100] OF NUMBER(8)

This could be represented as the following:

CREATE CLUSTER C(Subscript INTEGER)
HASH IS Subscript HASHKEY'S 100 SIZE 100;

CREATE TABLE X(Subscript NUMBER(2), Value NUMBER(8))
CLUSTER C(Subscript);

Alternatively, hashing is not advantageous in the following situations:

Most queries on the table retrieve rows over a range of cluster key values. For
example, in full table scans, or queries:

SELECT ... WHERE Cluster_key<...;

A hash function cannot be used to determine the location of specific hash keys;
instead, the equivalent of a full table scan must be done to fetch the rows for the
guery. With an index, key values are ordered in the index, so cluster key values
that satisfy the WHERIElause of a query can be found with relatively few 1/0s.

A table is not static, but is continually growing. If a table grows without limit,
then the space required over the life of the table (thus, of its cluster) cannot be
predetermined.

Selecting an Index Strategy 5-21

Managing Hash Clusters and Clustered Tables

« Applications frequently perform full table scans on the table and the table is

sparsely populated. A full table scan in this situation takes longer under
hashing.

« You cannot afford to preallocate the space the hash cluster will eventually need.

In most cases, you should decide (based on the above information) whether to use
hashing or indexing. If you use indexing, consider whether it is best to store a table
individually or as part of a cluster.

See Also: "Guidelines for Creating Clusters" on page 5-14

If you decide to use hashing, then a table can still have separate indexes on any
columns, including the cluster key.

See Also: For additional guidelines on the performance
characteristics of hash clusters, see Oracle8i Designing and Tuning for
Performance.

5-22 Application Developer's Guide - Fundamentals

Speeding Up Index Access with
Index-Organized Tables

This chapter covers the following topics:

Overview of Index-Organized Tables
Features of Index-Organized Tables
When to Use Index-Organized Tables

Example

See Also: For the syntax of the ORGANIZATION INDEX clause
of the CREATE TABLE statement, see Oracle8i SQL Reference.

Speeding Up Index Access with Index-Organized Tables 6-1

Overview of Index-Organized Tables

Overview of Index-Organized Tables

An index-organized table—in contrast to an ordinary table—has its own way of
structuring, storing, and indexing data. A comparison with an ordinary table may
help to explain its uniqueness.

Index-Organized Tables versus Ordinary Tables

A row in an ordinary table has a stable physical location. Once it is given its first
physical location, it never completely moves. Even if the row is partially moved
with the addition of new data, there is always a row piece at the original physical
address—identified by the original physical rowid—from which the system can find
the rest of the row. As long as the row exists, its physical rowid does not change.

When you index a column in an ordinary table, the newly created index stores both
the column data as well as the rowid.

A row in an index-organized table does not have a stable physical location. An
index-organized table is, on the one hand, like an ordinary table with an index on
one or more of its columns. It is unique, however, in that it holds its data, not in
stable rows, but in sorted order in the leaves of a B*-tree index built on the table’s
primary key. These rows may move around to retain the sorted order. An insertion,
for example, can cause an index leaf to split and the existing row to be moved to a
different slot, or even to a different block.

The leaves of the B*-tree index hold the primary key and the actual row data.
Changes to the table data—for example, adding new rows, or updating or deleting
existing rows—result only in updating the index.

See Also: For more information on B*-tree indexes, see Oracle8i
Concepts

Advantages of Index-Organized Tables

Because they store rows in the B*-tree index based on the primary key,
index-organized tables offer the following advantages over ordinary tables:

Fast access to table data for queries involving exact match and/or range search

on a primary key ~ Once a search has located the key values, the remaining data is
present at that location. There is no need to follow a rowid back to table data, as
would be the case with an ordinary table and index structure. The index-organized
table thus shows its efficiency by eliminating one 1/0, namely, the read of the table.

6-2 Application Developer's Guide - Fundamentals

Overview of Index-Organized Tables

Best table organization for 24x7 operations When your database must be
available 100% of the time, index-organized tables provide the following
advantages:

= You can reorganize an index-organized table or an index-organized table
partition (to recover space or improve performance) without rebuilding its
indexes. This results in a short reorganization maintenance window.

= You can reorganize an index-organized table online. This and the ability to
perform online reorganization of secondary indexes eliminates the
reorganization maintenance window.

Reduced storage requirements This is because the key columns are not

duplicated in both the table and the index, and because no additional storage is
needed for rowids.

Figure 6-1 Conventional Table and an Index versus Index-Organized Table

Primary Key Index
All data stored
in index

DBMS 1
DBMS 2
Oracle 1
Oracle 2

DBMS 1
DBMS 2
Oracle 1
Oracle 2

ROWID 1
ROWID 2
ROWID 3
ROWID 4

DBMS1 17
DBMS 2 2
Oraclel 14
Oracle 2 31

Speeding Up Index Access with Index-Organized Tables 6-3

Features of Index-Organized Tables

Features of Index-Organized Tables

You can move your existing data into an index-organized table and do all the
operations you would perform in an ordinary table. Some of the features now
available to you in using index-organized tables include the following.

Same Support for Alter Table Options as in Ordinary Tables All of the alter
options available on ordinary tables are now available for index-organized tables.
This includes ADD) MODIFY and DROP COLUMNSBd CONSTRAINTSHowever, the
primary key constraint for an index-organized table cannot be dropped, deferred, or
disabled.

Logical ROWID Support Because of the inherent movability of rows in a B*-tree
index, a secondary index on an index-organized table cannot be based on a physical
rowid which is inherently fixed. Instead, a secondary index for an index-organized
table is based on what is called the logical rowid. A logical rowid has no permanent
physical address and can move across data blocks when new rows are inserted.
However, if the physical location of a row changes, its logical rowid remains valid.

A logical rowid includes the table’s primary key and a guess which identifies the
block location of a row at the time the guess is made. The guess makes rowid access
to non-volatile index-organized tables comparable to access of ordinary tables.

Logical rowids are similar to physical rowids in the following ways:

« Users can select ROWIDfrom an index-organized table and access the rows
using WHERE ROWID = <value predicate =~ >.

« The access through the logical rowid is the fastest possible way to get to a
specific row, even if it takes more than one block access to get it.

« Logical rowid of a row does not change as long as the primary key value does
not change. However, unlike the physical rowid which remains immovable
through all updates, the logical rowid can move when hew rows are inserted.

Oracle 8i, release 8.1, introduces a single datatype, called universal rowid, to
support both logical and physical rowids.

Applications which use rowids today may, if using index-organized tables, have to
change to use universal rowids, but the changes are simpler due to the availability
of UROWIDMatatype. This allows applications to access logical and physical rowids
in a unified manner.

For more information: See "Declaring a Universal Rowid
Datatype" on page 6-11.

6-4 Application Developer’'s Guide - Fundamentals

Features of Index-Organized Tables

Secondary Index Support Secondary indexes on index-organized tables differ from
indexes on ordinary tables in two ways:

« They store logical rowids instead of physical rowids. Thus, a table maintenance
operation such as ALTER TABLE MOV#oes not make the secondary index
unusable.

« The logical rowid also includes a guess that provides a direct access to the
primary key index leaf block. If the guess is correct, a secondary index scan
would incur a single additional 1/0 once the secondary key is found. The
performance would be similar to that of a secondary index-scan on an ordinary
table.

Both unique and non-unique secondary indexes, as well as function-based
secondary indexes, are supported. However, bit-mapped secondary indexes on
index-organized tables are currently not supported.

LOB Columns You can create internal and external LOBcolumns in
index-organized tables to store large unstructured data such as audio, video, and
images. The SQL DDL, DML, and piece-wise operations on LOBs in
index-organized tables exhibit the same behavior as in ordinary tables. The main
differences are:

« Tablespace mapping—BYy default (or unless specified otherwise), the LOB’s
data and index segments are created in the tablespace in which the primary key
index segment of the index-organized table is created.

« Inline vs. Out-of-line storage—By default, all LOBs in index-organized tables
created without an overflow segment are stored out-of-line (that is, the default
storage attribute is DISABLE STORAGE IN ROWspecifying an ENABLE
STORAGE IN ROYur such LOBs, will result in an error. However, LOBsIn
index-organized tables with overflow segments have the same characteristics as
those in ordinary tables.

Other LOBfeatures—such as BFILEs , temporary LOBs, and varying character
width LOBs—are also supported in index-organized tables. You use them as you
would ordinary tables. Support for LOBs in partitioned index-organized tables is
not currently available.

Parallel Query Queries on index-organized tables involving primary key index

scan can be executed in parallel. However, parallel execution of secondary
index-only scan queries is not yet supported.

Speeding Up Index Access with Index-Organized Tables 6-5

Features of Index-Organized Tables

Object Support Most of the object features are supported on index-organized
tables, including Object Type, VARRAYsNested Table, and REF Columns. However,
you cannot create object tables (TABLE OF <object type>) as index-organized
tables.

SQL*Loader This utility supports both ordinary and direct path load of
index-organized tables and their associated indexes (including partitioning
support). However, direct path parallel load to an index-organized table is not
supported. An alternate method of achieving the same result is to perform parallel
load to an ordinary table using SQL*Loader, then use the parallel CREATE TABLE
AS SELECT option to build the index-organized table.

Export/Import ~ This utility supports export (both ordinary and direct path) and
import of non-partitioned and partitioned index-organized tables.

Distributed Database and Replication Support You can replicate both
non-partitioned and partitioned index-organized tables.

Tools The Oracle Enterprise Manager supports generating SQL statements for
CREATEand ALTERoperations on an index-organized table.

Key Compression Key compression allows elimination of repeated occurrences of
key column prefixes in index-organized tables and indexes. The salient
characteristics of the scheme are:

« Key compression breaks an index key into a prefix entry and suffix entry.
Compression is achieved by sharing the prefix entries among all the suffix
entries in an index block.

« Only keys in the leaf blocks of a B*-tree are compressed. Keys in the branch
blocks of a B*-tree are still suffix truncated but not subjected to key
compression.

6-6 Application Developer’'s Guide - Fundamentals

When to Use Index-Organized Tables

When to Use Index-Organized Tables

There are several occasions when you may prefer to use index-organized tables over
ordinary tables.!

When You Want to Avoid Redundant Data Storage For tables, where the majority
of columns form the primary key, there is a significant amount of redundant data
stored. You can avoid this redundant storage by using an index-organized table.
Also, by using an index-organized table, you increase the efficiency of the primary
key-based access to non-key columns.

When Developing VLDB and OLTP Applications The ability to partition an
index-organized table on a range of column values makes the use of
index-organized tables suitable for VLDB applications.

One major advantage of an index-organized table over an ordinary table stems from
the logical nature of the index-organized table’s secondary indexes. After an ALTER
TABLE MOVENd SPLIT operation, global indexes on index-organized tables remain
usable because the index rows contain logical rowids. In the case of ordinary tables,
by contrast, these operations result in making the global index unusable, requiring a
complete index rebuild, which can be very expensive.

Similarly, after an ALTER TABLE MOV&peration, local indexes on index-organized
tables are still usable. On the other hand, for ordinary tables, the MOVEperation
results in making a secondary local index unusable.

The partition maintenance operations described above do make the local and global
indexes on index-organized table perform slower as the guess component of logical
rowid becomes invalid. However, the indexes are still usable via the primary
key-component of the logical rowid.

In addition, the ALTER TABLE MOV&peration can be done on-line. This
functionality makes index-organized tables ideal for applications requiring 24X7
availability.

When Developing Time-series Applications The ability to cluster rows based on
the primary key makes index-organized tables attractive for time-series

! If you use Oracle Advanced Queuing, you may be familiar with index-organized tables

already. Oracle Advance Queuing provides message qlueumg as an integrated part of the
Oracle8i server, and uses index-organized tables to hold metadata information for multiple
consumer queues. In this case, the index-organized table acts as an “index,” storing queue
metadata as part of a primary key B*-tree index on the queue identifier. DML operations in
turn have to update the “index,” and this occurs efficiently by updating the underlying
index-organized table.

Speeding Up Index Access with Index-Organized Tables 6-7

When to Use Index-Organized Tables

applications. Typically, a time-series is a set of time-stamped rows belonging to a
single item such as stock price. Data is typically accessed through an item identifier
such as a stock symbol and a time stamp. By defining, an index-organized table
with primary key (stock symbol, time stamp), the Oracle8 Time Series Data
Cartridge is able to store and manipulate time-series data efficiently. You can
achieve further storage savings by compressing repeated occurrences of the item
identifier (for example. the stock symbol) in a time series by using an
index-organized table with key compression.

When Using Nested Tables For a nested table column, Oracle internally creates a
storage table to hold all the nested table rows. The rows belonging to a single nested
table instance are identified by a NESTED_TABLE_IDcolumn. If an ordinary table is
used as nested table column storage, the nested table rows typically get
de-clustered. By contrast, when you use an index-organized table, the nested table
rows can be clustered based on the NESTED_TABLE_IDcolumn. In Oracle 8i,
Release 8.1, you can specify the storage of the nested table to be an index-organized
table, as illustrated in the following.

CREATE TYPE Project_tAS OBJECT(Pno NUMBER, Pname VARCHAR2(80));
CREATE TYPE Project_setAS TABLE OF Project .
CREATE TABLE Employees (Eno NUMBER, Projects PROJECT SET)
NESTED TABLE Projects_ntab STORE AS Emp_project tab
(PRIMARY KEY(Nested _table_id, Pno)) ORGANIZATION INDEX)
RETURN AS LOCATOR;

When Using Extensible Indexing Oracle 8i, Release 8.1 introduces the Extensible
Indexing Framework which allows you to add a new access method to the
database. Typically, domain-specific indexing schemes need some storage
mechanism to hold their index data. Index-organized tables are ideal candidates for
such domain index storage. Oracle8 Spatial and Text Database Cartridges have
implemented domain-specific indexing schemes that use index-organized tables for
storing their index data.

6-8 Application Developer’'s Guide - Fundamentals

Example

Example

Note: You may need to set up the following data structures for
certain examples to work; such as:

CONNECT system/manager

GRANT CREATE TABLESPACE TO scott;

CONNECT scott/tiger

CREATE TABLESPACE Ind_tbs DATAFILE 'diskl:moredata2’
SIZE 100K;

CREATE TABLE Doc_tab DATAFILE 'diskl:moredata2’ SIZE
100K;

CREATE TABLESPACE Ovf_tbs DATAFILE 'disk1l:moredata3’
SIZE 100K;

CREATE TABLESPACE Ind_tsO DATAFILE 'diskl:moredata5’
SIZE 100K REUSE;

CREATE TABLESPACE Ov_ts0 DATAFILE 'diskl:moredata6’
SIZE 100K REUSE;

CREATE TABLESPACE Ind_ts1 DATAFILE 'diskl:moredata?7’
SIZE 100K REUSE;

CREATE TABLESPACE Ov_ts1 DATAFILE 'diskl:moredata8’
SIZE 100K REUSE;

CREATE TABLESPACE Ind_ts2 DATAFILE 'diskl:moredata9’
SIZE 100K REUSE;

CREATE TABLESPACE Ov_ts2 DATAFILE 'disk1l:moredatal0Q’
SIZE 100K REUSE;

CREATE TABLE Doc_tab (tok VARCHAR2(4),id
VARCHAR2(14),freq NUMBER);

This example illustrates some of the basic tasks in creating and using
index-organized tables. In this example, a text search engine uses an inverted index*
to allow a user to query for specific words or phrases over the Web. It then returns
to the user a list of hypertext links to documents containing the queried words and
phrases, and it ranks those links in the order of relevance.

This example illustrates the following tasks:

! An inverted index breaks each document into individual words or tokens. For each word,
the inverted index builds a list of documents in which the word occurs, then stores that list
in the database. The application performs a content-based search by scanning the inverted
index looking for tokens of interest. From a development standpoint, an inverted index
typically contains entries of the form <token, document_id, occurrence_data> for each

istinct word in a document.

Speeding Up Index Access with Index-Organized Tables 6-9

Example

Moving Existing Data from an Ordinary Table into an Index-Organized Table
Creating Index-Organized Tables

Declaring a Universal Rowid Datatype

Creating Secondary Indexes on Index-Organized Tables

Manipulating Index-Organized Tables

Specifying an Overflow Data Segment

Determining the Last Non-key Column Included in the Index Row Head Piece
Storing Columns in the Overflow Segment

Modifying Physical and Storage Attributes

Partitioning an Index-Organized Table

Rebuilding an Index-Organized Table

Moving Existing Data from an Ordinary Table into an Index-Organized Table

The CREATE TABLE AS SELEGIHmmand allows you to move existing data from
an ordinary table into an index-organized table. In the following example, an
index-organized table, called docindex , is created from an ordinary table called
doctable

CREATE TABLE Docindex
(Token,
Doc id,
Token_frequency,
CONSTRAINT Pk_docindex PRIMARY KEY (Token, Doc _id)
)
ORGANIZATION INDEX TABLESPACE Ind_tbs
PARALLEL (DEGREE 2)
AS SELECT *from Doc_tab;

Note that the PARALLELclause allows the table creation to be performed in parallel.

Creating Index-Organized Tables

To create an index-organized table, you use the ORGANIZATION INDEXclause. In
the following example, an inverted index—typically used by Web text-search
engines—uses an index-organized table.

CREATE TABLE Docindex
(Token CHAR(20),

6-10 Application Developer's Guide - Fundamentals

Example

Doc id NUMBER,
Token_frequency NUMBER,
CONSTRAINT Pk_docindex PRIMARY KEY (Token, Doc id)

)
ORGANIZATION INDEX TABLESPACE Ind_tbs;

Declaring a Universal Rowid Datatype
The following example shows how you declare the UROWIDMatatype.

DECLARE
Rid UROWID;
BEGIN
INSERT INTO Docindex VALUES (Or80/, 2, 30)
RETURNING Rowid INTO RID;
UPDATE Docindex SET Token=0r81' WHERE ROWID = Rid;
END;

Creating Secondary Indexes on Index-Organized Tables

You can create secondary indexes on index-organized tables to provide multiple
access paths. The following example shows the creation of an index on (doc_id ,
token).

CREATE INDEX Doc _id_index on Docindex(Doc _id, Token);

This secondary index allows Oracle to efficiently process queries involving
predicates on doc_id , as the following example illustrates.

SELECT Token FROM Docindex WHERE Doc_id = 1;

Manipulating Index-Organized Tables

Applications manipulate the index-organized tables just like an ordinary table,
using standard SQL statements for SELECT INSERT, UPDATEor DELETE
operations. For example, you can manipulate the docindex table as follows:

INSERT INTO Docindex VALUES (‘Oracle8.1, 3, 17);

SELECT * FROM Docindex;

UPDATE Docindex SET Token = ‘Oracle8 WHERE Token = ‘Oracle8.1’;
DELETE FROM Docindex WHERE Doc_id=1;

Also, you can use SELECT FOR UPDATEstatements to lock rows of an
index-organized table. All of these operations result in manipulating the primary
key B*-tree index. Both query and DML operations involving index-organized
tables are optimized by using this cost-based approach.

Speeding Up Index Access with Index-Organized Tables 6-11

Example

Specifying an Overflow Data Segment
Storing all non-key columns in the primary key B*-tree index structure may not
always be desirable because, for example:

« Each additional non-key column stored in the primary key index reduces the
dense clustering of index rows in the B*-tree index leaf blocks

or because

« Aleaf block of aB*-tree must hold at least two index rows, and putting all
non-key columns as part of an index row may not be possible.

To overcome these problems, you can associate an overflow data segment with an
index-organized table. In the following example, an additional column, token_
offsets , is required for the docindex table. This example shows how you can
create an index-organized table and use the OVERFLOWfption to create an overflow
data segment.

CREATE TABLE Docindex2
(Token CHAR(20),
Doc id NUMBER,
Token_frequency NUMBER,
Token _offsets VARCHAR(512),
CONSTRAINT Pk_docindex2 PRIMARY KEY (Token, Doc_id)

)
ORGANIZATION INDEX TABLESPACE Ind_ths PCTTHRESHOLD 20

OVERFLOW TABLESPACE Ovf_ths INITRANS 4;

For the overflow data segment, you can specify physical storage attributes such as
TABLESPACEINITRANS, and so on.

For an index-organized table with an overflow segment, the index row contains a
<key, row head> pair, where the row head contains the first few non-key columns
and a rowid that points to an overflow row-piece containing the remaining column
values. Although this approach incurs the storage cost of one rowid per row, it
nevertheless avoids key column duplication.

6-12 Application Developer's Guide - Fundamentals

Example

Figure 6-2 Overflow Segment

Primary Key Index

Non-key Cols
b y

Key Cols | Non-key Cols | ROWID

Determining the Last Non-key Column Included in the Index Row Head Piece

To determine the last non-key column to include in the index row head piece, you
use the PCTTHRESHOLBption specified as a percentage of the leaf block size. The
remaining non-key columns are stored in the overflow data segment as one or more
row-pieces. Specifically, the last non-key column to be included is chosen so that the
index row size (key +row head) does not exceed the specified threshold (which, in
the following example, is 20% of the index leaf block). By default, PCTTHRESHOLD
is set at 50 when omitted.

The PCTTHRESHOLBption determines the last non-key column to be included in
the index on a per row basis. It does not, however, allow you to specify that the
same set of columns be included in the index for all rows in the table. For this
purpose, the INCLUDING option is provided.

The CREATE TABLEstatement in the following example includes all the columns
up to the token_frequency column in the index leaf block and forces the token_
offsets column to the overflow segment.

CREATE TABLE Docindex3
(Token CHAR(20),
Doc id NUMBER,
Token_frequency NUMBER,
Token_offsets VARCHAR(512),
CONSTRAINT Pk_docindex3 PRIMARY KEY (Token, Doc_id)

)
ORGANIZATION INDEX TABLESPACE Ind_ths INCLUDING Token_frequency

Speeding Up Index Access with Index-Organized Tables 6-13

Example

OVERFLOW TABLESPACE OV _tbs;

Such vertical partitioning of a row between the index and data segments allows for
higher clustering of rows in the index. This results in better query performance for
the columns stored in the index. For example, if the token_offsets column is
infrequently accessed, then pushing this column out of the index results in better
clustering of index rows in the primary key B*-tree structure (Figure 6-3). This in
turn results in overall improved query performance. However, there is one
additional block access for columns stored in the overflow data segment, and this
can slow performance.

Storing Columns in the Overflow Segment

The INCLUDING option ensures that all columns after the specified including

column are stored in the overflow segment. If the including column specified is

such that corresponding index row size exceeds the specified threshold, then the

last non-key column to be included is determined according to the PCTTHRESHOLD
option.

6-14 Application Developer's Guide - Fundamentals

Example

Figure 6-3 PCTTHRESHOLD versus INCLUDING Column Usage

PCTTHRESHOLD option forces

token_offsets into overflow DBMS 1 17 ROWID1
3789 ..
segments for some rows DBMS2 2 20 45) 510 32
Oracle 1 14 ROWID2
416 21 ...
Oracle 2
INCLUDING option forces
token_offsets into overflow DBMS 1 3789 ..
segment for all rows DBMS 2 2 ROWID3 51032 ...
Oracle1 14 ROWID2 2045 ...
Oracle 2 > 416 21 ...

Modifying Physical and Storage Attributes

You can use the ALTER TABLEcommand to modify physical and storage attributes
for both the index and overflow data segments as well as alter PCTTHRESHOLBNd
INCLUDING column values. The following example sets the INITRANS of index
segment to 4, PCTTHRESHOL® 20, and the INITRANS of the overflow data
segment to 6. The altered values are used for subsequent operations on the table.

ALTER TABLE Docindex INITRANS 4 PCTTHRESHOLD 20 OVERFLOW INITRANS 6;
For index-organized tables created without an overflow data segment, you can add

an overflow data segment using ALTER TABLE ADD OVERFL@Wtion. The
following example shows how to add an overflow segment to the docindex table.

ALTER TABLE Docindex ADD OVERFLOW,

Speeding Up Index Access with Index-Organized Tables 6-15

Example

Analyzing an Index-Organized Table

Index-organized tables are analyzed just like ordinary tables using the ANALYZE
command. The following example illustrates how you could use the ANALYZE
command to analyze the docindex table.

ANALYZE TABLE Docindex COMPUTE STATISTICS;

Using the ANALYZEcommand analyzes both the primary key index segment and
the overflow data segment, and computes logical as well as physical statistics for
the table. Also, you can determine how many rows have one or more chained
overflow row-pieces using the ANALYZE LIST CHAINED ROWsSption. However, to
identify the chain rows, you must create a slightly different CHAINED_ROWfable
that includes primary key columns. With the logical rowid support added in
Oracle8i, Release 8.1.5, a separate CHAINED_ROWT®ble is no longer needed.

Loading, exporting/importing, replicating an Index-Organized Table

Data can be loaded into both non-partitioned and partitioned index-organized
tables using the ordinary or direct path with the SQL*Loader. The data can also be
exported or imported using the Export/Import utility. Index-organized tables can
also be replicated in a distributed database just like ordinary tables.

Partitioning an Index-Organized Table

You can partition index-organized tables by range of column values. However, to
create such partitioned index-organized tables the set of partitioning columns must be a
subset of primary key columns. By imposing this restriction, only a single partition
needs to be searched for to verify the uniqueness of the primary key during DML
operations. This preserves the partition independence property.

The following are key aspects of partitioned index-organized tables:

« You must specify the ORGANIZATION INDEXlause to create an
index-organized table as part of table-level attributes. This property is implicitly
inherited by all partitions.

» You must specify the OVERFLOW/ption as part of table-level attribute to create
an index-organized table with overflow data segment.

« The OVERFLOWption results in the creation of overflow data segments, which
are themselves equi-partitioned with the primary key index segments. That is,
each partition has an index segment and an overflow data segment.

6-16 Application Developer's Guide - Fundamentals

Example

« Asinordinary partitioned tables, you can specify default values for physical
attributes at the table-level. These can be overridden for each partition (both for
index and overflow data segment).

« The tablespace for index segment, if not specified for a partition, is set to the
table level default. If the table level default is not specified, then the default
tablespace for the user is used.

« The default values for PCTTHRESHOLEBNd INCLUDING column can only be
specified at the table-level.

« All the attributes that are specified before the OVERFLOWeyword are
applicable to primary index segments. All the attributes specified after the
OVERFLOWeyword are applicable to overflow data segments.

« The tablespace for an overflow data segment, if not specified for a partition, is
set to the table level default. If the table-level default is not specified, then the
tablespace of the corresponding partition’s index segment is used.

The following example continues the example of the docindex table. It illustrates a
range partition on token values.

CREATE TABLE Docindex4
(Token CHAR(20),
Doc id NUMBER,
Token_frequency NUMBER,
Token_offsets VARCHAR(512),
CONSTRAINT Pk_docindex4 PRIMARY KEY (Token, Doc_id)
)
ORGANIZATION INDEX INITRANS 4 INCLUDING Token_frequency
OVERFLOW INITRANS 6
PARTITION BY RANGE(token)
(PARTITION P1 VALUES LESS THAN ()
TABLESPACE Ind_tsO OVERFLOW TABLESPACE Ov_ts0,
PARTITION P2 VALUES LESS THAN (s)
TABLESPACE Ind_ts1 OVERFLOW TABLESPACE Ov_ts1,
PARTITION P3 VALUES LESS THAN (MAXVALUE)
TABLESPACE Ind_ts2 OVERFLOW TABLESPACE Ov_ts2);

This will result in creation of the table shown in Figure 6-4. The INCLUDING

column results in storing the token_offsets in the overflow data segment for
each partition.

Speeding Up Index Access with Index-Organized Tables 6-17

Example

Figure 6-4 Range-partitioned Index-organized Table with Overflow Segment

Primary key index on token <'j' token <'s' token < MAXVALL
(token, doc_id)

Table docindex
range-partitioned
on token

Overflow segment ov_ts0 ov_tsl ov_ts2
holds token_offsets - - -

Support for partitioned indexes on index-organized tables is very similar to that for
an ordinary table. Local prefixed, local non-prefixed, and global prefixed
partitioned indexes are supported on index-organized tables. The only difference is
that these indexes store logical rowids instead of physical rowids.

All of the ALTER TABLEoperations, except MERGEare available for partitioned
index-organized tables. However, there are some differences in behavior with
respect to ordinary tables:

« For ALTER TABLE MOVRartition operations, all indexes—Ilocal, global, and
non-partitioned—remain USABLEbecause the indexes contain logical rowids.
However, the guess stored in the logical rowid becomes invalid.

« For SPLIT partition operations, all indexes or global index partitions remain
usable.

« For ALTER TABLE EXCHANGtartition, the target table must be a compatible
index-organized table.

« Users can use the ALTER TABLE ADD OVERFLOWommand to add an
overflow segment and specify table-level default and partition-level physical
and storage attributes. This operation results in adding an overflow data
segment to each partition.

6-18 Application Developer's Guide - Fundamentals

Example

ALTER INDEXoperations are very similar to those on ordinary tables. The only
difference is that operations that reconstruct the entire index—namely, ALTER

INDEX REBUILD and SPLIT_PARTITION —result in reconstructing the guess
stored as part of the logical rowid.

Query and DML operations on partitioned index-organized tables work the same as
on ordinary partitioned tables.

Key Compression

You enable key compression by using the COMPRES8ause when specifying
physical attributes for the index segment. In addition, the prefix length (as number
of columns) can be specified to identify how the key can be broken into a prefix and
a suffix. The valid range of values for prefix length are [1 , number of primary

key columns minus 1]

CREATE TABLE Docindex5
(Token CHAR(20),
Doc id NUMBER,
Token_frequency NUMBER,
Token_offsets VARCHAR(512),
CONSTRAINT pk_docindex5 PRIMARY KEY (Token, Doc_id)

)
ORGANIZATION INDEX TABLESPACE Ind_ths COMPRESS 1 INCLUDING Token_frequency

OVERFLOW TABLESPACE OVf_tbs;

Common prefixes of length 1 (that is, token column) will be compressed in the
primary key (token, doc_id) occurrences. For the list of primary key values
(‘DBMS’, 1), (‘DBMS’, 2), (‘Oracle’, 1), (‘Oracle’, 2), the repeated occurrences of
‘DBMS’ and ‘Oracle’ are compressed away.

If a prefix length is not specified, by default it is set to number of primary key
columns minus 1 . The compress option can be specified during creation of an
index-organized table or as part of moving the index-organized table using ALTER
TABLE MOVBption. For example, you can disable compression as follows:

ALTER TABLE Docindex5 MOVE NOCOMPRESS;

Similarly, the indexes for ordinary tables and index-organized tables can be
compressed using the COMPRESSption.

Key Compression for Partitioned Index-Organized Tables Key compression is also

supported for partitioned index-organized tables. The compression clause must be
specified as part of table-level defaults. For each partition, compression can be

Speeding Up Index Access with Index-Organized Tables 6-19

Example

enabled or disabled. However, the prefix length cannot be changed at partition
level.

CREATE TABLE Docindex6
(Token CHAR(20),
Doc id NUMBER,
Token_frequency NUMBER,
Token_offsets VARCHAR(512),
CONSTRAINT Pk_docindex6 PRIMARY KEY (Token, Doc_id)

)
ORGANIZATION INDEX INITRANS 4 COMPRESS 1 INCLUDING Token _frequency
OVERFLOW INITRANS 6
PARTITION BY RANGE(Token)
(PARTITION P1VALUES LESS THAN (J)
TABLESPACE Ind_tsO OVERFLOW TABLESPACE Ov _ts0,
PARTITION P2 VALUES LESS THAN (s)
TABLESPACE Ind_ts1 NOCOMPRESS OVERFLOW TABLESPACE Ov _tsd,
PARTITION P3 VALUES LESS THAN (MAXVALUE)
TABLESPACE Ind_ts2 OVERFLOW TABLESPACE Ov_ts2

)

All partitions inherit the table-level default for prefix length. Partitions P1 and P3
are created with key-compression enabled. For partition P2, the compression is
disabled by the partition level NOCOMPRESfption.

For ALTER TABLE MOVE&nd SPLIT operations, the COMRPESption can be
altered. The following example rebuilds the partition with key compression
enabled.

ALTER TABLE Docindex6 MOVE PARTITION P2 COMPRESS;

Rebuilding an Index-Organized Table

A new SQL command, ALTER TABLE MOV,Ellows you to move, that is, rebuild the
table. This should be used when the B*-tree structure containing an index-organized
table gets fragmented due to a large number of inserts, updates, or deletes. The
MOVBbption rebuilds the primary key B*-tree index.

By default, the overflow data segment is not rebuilt, except when;
« The OVERFLOMWlause is explicitly specified,

« The PCTHRESHOLBNd/or INCLUDING column value are altered as part of
the MOVEtatement.

« Any LOBsare moved explicitly

6-20 Application Developer's Guide - Fundamentals

Example

By default, LOBcolumns related to index and data segments are not rebuilt, except
when the LOBcolumns are explicitly specified as part of the MOVEtatement. The
following example rebuilds the B*-tree index containing the table data after setting
the INITRANS to 6 for index blocks.

ALTER TABLE docindex MOVE INITRANS 6;

The following example rebuilds both the primary key index and overflow data
segment.

ALTER TABLE docindex MOVE TABLESPACE Ovf_ths OVERFLOW TABLESPACE ov_ts0;

By default, during the move, the table is not available for other operations.
However, you can move an index-organized table using the ONLINE option. The
following example allows the table to be available for DML and query operations
during the actual move operation. This feature makes the index-organized table
suitable for applications requiring 24X7 availability.

Caution: You may need to set your COMPATIBLEnitialization
parameter to ’8.1.3.0’ or higher to get the following to work:

ALTER TABLE Docindex MOVE ONLINE;

The MOVBbption is also available for ordinary tables. However, ONLINE move is
supported only for index-organized tables which do not have an overflow segment.

Speeding Up Index Access with Index-Organized Tables 6-21

Example

6-22 Application Developer's Guide - Fundamentals

v

Processing SQL Statements

This chapter describes how Oracle processes Structured Query Language (SQL)
statements. Topics include the following:

SQL Statement Execution

Controlling Transactions

Ensuring Repeatable Reads with Read-Only Transactions
Using Cursors

Explicit Data Locking

Explicitly Acquiring Row Locks

Letting Oracle Control Table Locking

User Locks

Concurrency Control Using Serializable Transactions

Autonomous Transactions

Although some Oracle tools and applications simplify or mask the use of SQL, all
database operations are performed using SQL. Any other data access method
would circumvent the security built into Oracle and potentially compromise data
security and integrity.

Processing SQL Statements 7-1

SQL Statement Execution

SQL Statement Execution

Table 7-1 outlines the stages commonly used to process and execute a SQL
statement. In some cases, these steps might be executed in a slightly different order.
For example, the DEFINE stage could occur just before the FETCHstage, depending
on how your code is written.

For many Oracle tools, several of the stages are performed automatically. Most
users do not need to be concerned with, or aware of, this level of detail. However,
you might find this information useful when writing Oracle applications.

See Also: Refer to Oracle8i Concepts for a description of each stage
of SQL statement processing for each type of SQL statement.

Identifying Extensions to SQL92 (FIPS Flagging)

The Federal Information Processing Standard for SQL (FIPS 127-2) requires a way to
identify SQL statements that use vendor-supplied extensions. Oracle provides a
FIPS flagger to help you write portable applications.

When FIPS flagging is active, your SQL statements are checked to see whether they
include extensions that go beyond the ANSI/ZISO SQL92 standard. If any
non-standard constructs are found, then the Oracle Server flags them as errors and
displays the violating syntax.

The FIPS flagging feature supports flagging through interactive SQL statements
submitted using Enterprise Manager or SQL*Plus. The Oracle Precompilers and
SQL*Module also support FIPS flagging of embedded and module language SQL.

When flagging is on and non-standard SQL is encountered, the following message
is returned:

ORA-00097: Use of Oracle SQL feature notin SQL92 level Level

Where level can be either ENTRYINTERMEDIATE or FULL.

7-2 Application Developer's Guide - Fundamentals

SQL Statement Execution

Figure 7-1 The Stages in Processing a SQL Statement

OPEN I

yes

query? DESCRIBE -

v

no

more? yes

DEFINE I <+

v

no

yes v

reparse? bind? BIND <+

no yes

EXECUTE I

v

PARALLELIZE I

: '

execute
others?

Processing SQL Statements 7-3

Controlling Transactions

Controlling Transactions

In general, only application designers using the programming interfaces to Oracle
are concerned with which types of actions should be grouped together as one
transaction. Transactions must be defined properly so work is accomplished in
logical units and data is kept consistent. A transaction should consist of all of the
necessary parts for one logical unit of work, no more and no less. Data in all
referenced tables should be in a consistent state before the transaction begins and
after it ends. Transactions should consist of only the SQL statements or PL/SQL
blocks that comprise one consistent change to the data.

A transfer of funds between two accounts (the transaction or logical unit of work),
for example, should include the debit to one account (one SQL statement) and the
credit to another account (one SQL statement). Both actions should either fail or
succeed together as a unit of work; the credit should not be committed without the
debit. Other non-related actions, such as a new deposit to one account, should not
be included in the transfer of funds transaction.

Improving Performance

In addition to determining which types of actions form a transaction, when you
design an application, you must also determine if you can take any additional
measures to improve performance. You should consider the following performance
enhancements when designing and writing your application. Unless otherwise
noted, each of these features is described in Oracle8i Concepts.

» Use the BEGIN_DISCRETE_TRANSACTIOIrocedure to improve the
performance of short, non-distributed transactions.

« Use the SET TRANSACTIONommand with the USE ROLLBACK SEGMENT
parameter to explicitly assign a transaction to an appropriate rollback segment.
This can eliminate the need to dynamically allocate additional extents, which
can reduce overall system performance.

« Use the SET TRANSACTIONMommand with the ISOLATION LEVEL set to
SERIALIZABLE to get ANSI/ZISO serializable transactions.

See Also:
« "Serializable Transaction Interaction" on page 7-25

« Oracle8i Concepts.

« Establish standards for writing SQL statements so that you can take advantage
of shared SQL areas. Oracle recognizes identical SQL statements and allows

7-4 Application Developer's Guide - Fundamentals

Controlling Transactions

them to share memory areas. This reduces memory storage usage on the
database server, thereby increasing system throughput.

« Use the ANALYZEcommand to collect statistics that can be used by Oracle to
implement a cost-based approach to SQL statement optimization. You can
supply additional "hints" to the optimizer as needed.

« Call the DBMS_APPLICATION_INFOSET_ACTIONprocedure before beginning
a transaction to register and name a transaction for later use when measuring
performance across an application. You should specify what type of activity a
transaction performs so that the system tuners can later see which transactions
are taking up the most system resources.

« Increase user productivity and query efficiency by including user-written
PL/SQL functions in SQL expressions as described in "Calling Stored Functions
from SQL Expressions".

= Create explicit cursors when writing a PL/SQL application.

« When writing precompiler programs, increasing the number of cursors using
MAX_OPEN_CURSOR#h often reduce the frequency of parsing and improve
performance.

See Also: "Using Cursors" on page 7-9

Committing a Transaction

To commit a transaction, use the COMMITcommand. The following two statements
are equivalent and commit the current transaction:

COMMIT WORK;
COMMIT;

The COMMITcommand allows you to include the COMMEN@arameter along with a
comment (less than 50 characters) that provides information about the transaction
being committed. This option is useful for including information about the origin of
the transaction when you commit distributed transactions:

COMMIT COMMENT 'Dallas/Accts_pay/Trans_type 10B';

Processing SQL Statements 7-5

Controlling Transactions

See Also: For additional information about committing in-doubt
distributed transactions, see Oracle8 Distributed Database Systems.

Rolling Back a Transaction

To roll back an entire transaction or a part of a transaction (that is, to a savepoint),
use the ROLLBACK.ommand. For example, either of the following statements rolls
back the entire current transaction:

ROLLBACK WORK;
ROLLBACK;

The WORKption of the ROLLBACK.ommand has no function.

To roll back to a savepoint defined in the current transaction, the TOoption of the
ROLLBACKommand must be used. For example, either of the following statements
rolls back the current transaction to the savepoint named POINT1.:

SAVEPOINT Pointl;

ROLLBACK TO SAVEPOQINT Pointl;
ROLLBACK TO Pointl;

See Also: For additional information about rolling back in-doubt
distributed transactions, see Oracle8 Distributed Database Systems.

Defining a Transaction Savepoint

To define a savepoint in a transaction, use the SAVEPOINTcommand. The following
statement creates the savepoint named ADD_EMP1n the current transaction:

SAVEPOINT Add_empl;
If you create a second savepoint with the same identifier as an earlier savepoint,

then the earlier savepoint is erased. After a savepoint has been created, you can roll
back to the savepoint.

There is no limit on the number of active savepoints per session. An active
savepoint is one that has been specified since the last commit or rollback.

An Example of COMMIT, SAVEPOINT, and ROLLBACK

The following series of SQL statements illustrates the use of COMMITSAVEPOINT
and ROLLBACKtatements within a transaction:

7-6 Application Developer’'s Guide - Fundamentals

Controlling Transactions

SQL Statement

Results

SAVEPOINT a;
DELETE...;
SAVEPOINT b;
INSERT INTO...;
SAVEPOINT c;
UPDATE...;
ROLLBACK TO c;

ROLLBACK TO b;

ROLLBACK TO c;
INSERT INTO...;
COMMIT;

First savepoint of this transaction

First DML statement of this transaction
Second savepoint of this transaction
Second DML statement of this transaction
Third savepoint of this transaction

Third DML statement of this transaction.

UPDATE statement is rolled back, savepoint C remains
defined

INSERT statement is rolled back, savepoint C is lost,
savepoint B remains defined

ORA-01086 error; savepoint C no longer defined
New DML statement in this transaction

Commits all actions performed by the first DML statement
(the DELETEstatement) and the last DML statement (the
second INSERT statement)

All other statements (the second and the third statements) of
the transaction had been rolled back before the COMMITThe
savepoint A is no longer active.

Privileges Required for Transaction Management

No privileges are required to control your own transactions; any user can issue a
COMMITROLLBACKor SAVEPOINTstatement within a transaction.

Processing SQL Statements 7-7

Ensuring Repeatable Reads with Read-Only Transactions

Ensuring Repeatable Reads with Read-Only Transactions

By default, the consistency model for Oracle guarantees statement-level read
consistency, but does not guarantee transaction-level read consistency (repeatable
reads). If you want transaction-level read consistency, and if your transaction does
not require updates, then you can specify a read-only transaction. After indicating
that your transaction is read-only, you can execute as many queries as you like
against any database table, knowing that the results of each query in the read-only
transaction are consistent with respect to a single point in time.

A read-only transaction does not acquire any additional data locks to provide
transaction-level read consistency. The multi-version consistency model used for
statement-level read consistency is used to provide transaction-level read
consistency; all queries return information with respect to the system control
number (SCN) determined when the read-only transaction begins. Because no data
locks are acquired, other transactions can query and update data being queried
concurrently by a read-only transaction.

Changed data blocks queried by a read-only transaction are reconstructed using
data from rollback segments. Therefore, long running read-only transactions
sometimes receive a "snapshot too old" error (ORA-01555). Create more, or larger,
rollback segments to avoid this. Alternatively, you could issue long-running queries
when online transaction processing is at a minimum, or you could obtain a shared
lock on the table you were querying, prohibiting any other modifications during the
transaction.

A read-only transaction is started with a SET TRANSACTIONtatement that
includes the READ ONLY¥ption. For example:

SET TRANSACTION READ ONLY;

The SET TRANSACTIONtatement must be the first statement of a new transaction;
if any DML statements (including queries) or other non-DDL statements (such as
SET ROLE) precede a SET TRANSACTION READ ONEdtement, then an error is
returned. Once a SET TRANSACTION READ ONEttement successfully executes,
only SELECT(without a FOR UPDATEclause), COMMITROLLBACKor non-DML
statements (such as SET ROLEALTER SYSTEM, LOCK TABDEre allowed in the
transaction. Otherwise, an error is returned. A COMMITROLLBACKor DDL
statement terminates the read-only transaction (a DDL statement causes an implicit
commit of the read-only transaction and commits in its own transaction).

7-8 Application Developer’'s Guide - Fundamentals

Using Cursors

Using Cursors

PL/SQL implicitly declares a cursor for all SQL data manipulation statements,
including queries that return only one row. For queries that return more than one
row, you can explicitly declare a cursor to process the rows individually.

A cursor is a handle to a specific private SQL area. In other words, a cursor can be
thought of as a name for a specific private SQL area. A PL/SQL cursor variable
enables the retrieval of multiple rows from a stored procedure. Cursor variables
allow you to pass cursors as parameters in your 3GL application. Cursor variables
are described in PL/SQL User’s Guide and Reference.

Although most Oracle users rely on the automatic cursor handling of the Oracle
utilities, the programmatic interfaces offer application designers more control over
cursors. In application development, a cursor is a named resource available to a
program, which can be specifically used for parsing SQL statements embedded
within the application.

Declaring and Opening Cursors

There is no absolute limit to the total number of cursors one session can have open
at one time, subject to two constraints:

« Each cursor requires virtual memory, so a session’s total number of cursors is
limited by the memory available to that process.

« A system-wide limit of cursors per session is set by the initialization parameter
named OPEN_CURSORBSBund in the parameter file (such as INIT .ORA.

See Also: Parameters are described in Oracle8i Reference.

Explicitly creating cursors for precompiler programs can offer some advantages in
tuning those applications. For example, increasing the number of cursors can often
reduce the frequency of parsing and improve performance. If you know how many
cursors may be required at a given time, then you can make sure you can open that
many simultaneously.

Using a Cursor to Re-Execute Statements

After each stage of execution, the cursor retains enough information about the SQL
statement to re-execute the statement without starting over, as long as no other SQL
statement has been associated with that cursor. This is illustrated in Figure 7-1.
Notice that the statement can be re-executed without including the parse stage.

Processing SQL Statements 7-9

Using Cursors

By opening several cursors, the parsed representation of several SQL statements can
be saved. Repeated execution of the same SQL statements can thus begin at the
describe, define, bind, or execute step, saving the repeated cost of opening cursors
and parsing.

Closing Cursors

Closing a cursor means that the information currently in the associated private area
is lost and its memory is deallocated. Once a cursor is opened, it is not closed until
one of the following events occurs:

« The user program terminates its connection to the server.

« If the user program is an OCI program or precompiler application, then it
explicitly closes any open cursor during the execution of that program.
(Howvever, when this program terminates, any cursors remaining open are
implicitly closed.)

Cancelling Cursors

Cancelling a cursor frees resources from the current fetch.The information currently
in the associated private area is lost but the cursor remains open, parsed, and
associated with its bind variables.

Note: You cannot cancel cursors using Pro*C or PL/SQL.

See Also: For more information about cancelling cursors, see
Oracle Call Interface Programmer’s Guide.

7-10 Application Developer's Guide - Fundamentals

Explicit Data Locking

Explicit Data Locking

Oracle always performs necessary locking to ensure data concurrency, integrity, and
statement-level read consistency. However, options are available to override the
default locking mechanisms. Situations where it would be advantageous to override
the default locking of Oracle include the following:

« Anapplication desires transaction-level read consistency or "repeatable
reads"—transactions must query a consistent set of data for the duration of the
transaction, knowing that the data has not been changed by any other
transactions of the system. Transaction-level read consistency can be achieved
by using explicit locking, read-only transactions, serializable transactions, or
overriding default locking for the system.

« Anapplication requires a transaction to have exclusive access to a resource. To
proceed with its statements, the transaction with exclusive access to a resource
does not have to wait for other transactions to complete.

The automatic locking mechanisms can be overridden at two different levels:

transaction level Transactions including the following SQL statements override
Oracle’s default locking: the LOCK TABLEcommand, the
SELECTcommand including the FOR UPDATEIlause, and the
SET TRANSACTIONommand with the READ ONLYr
ISOLATION LEVEL SERIALIZABLE options. Locks acquired
by these statements are released after the transaction is
committed or rolled back.

system level An instance can be started with non-default locking by
adjusting the initialization parameters SERIALIZABLE and
ROW_LOCKING

The following sections describe each option available for overriding the default
locking of Oracle. The initialization parameter DML_LOCKSletermines the
maximum number of DML locks allowed.

See Also: See the Oracle8i Reference for a discussion of
parameters.

The default value should be sufficient; however, if you are using additional manual
locks, then you may need to increase this value.

Processing SQL Statements 7-11

Explicit Data Locking

Caution: If you override the default locking of Oracle at any
level, then be sure that the overriding locking procedures operate
correctly: Ensure that data integrity is guaranteed, data
concurrency is acceptable, and deadlocks are not possible or are
appropriately handled.

Choosing a Locking Strategy

A transaction explicitly acquires the specified table locks when a LOCK TABLE
statement is executed. A LOCK TABLEstatement manually overrides default
locking. When a LOCK TABLEstatement is issued on a view, the underlying base
tables are locked. The following statement acquires exclusive table locks for the
EMP_TABand DEPT_TABtables on behalf of the containing transaction:

LOCK TABLE Emp_tab, Dept_tab
IN EXCLUSIVE MODE NOWAIT;

You can specify several tables or views to lock in the same mode; however, only a
single lock mode can be specified per LOCK TABLEstatement.

Note: When a table is locked, all rows of the table are locked. No
other user can modify the table.

You can also indicate if you do or do not want to wait to acquire the lock. If you
specify the NOWAIToption, then you only acquire the table lock if it is immediately
available. Otherwise an error is returned to notify that the lock is not available at
this time. In this case, you can attempt to lock the resource at a later time. If NOWAIT
is omitted, then the transaction does not proceed until the requested table lock is
acquired. If the wait for a table lock is excessive, then you might want to cancel the
lock operation and retry at a later time; you can code this logic into your
applications.

7-12 Application Developer's Guide - Fundamentals

Explicit Data Locking

Note: A distributed transaction waiting for a table lock can
time-out waiting for the requested lock if the elapsed amount of
time reaches the interval set by the initialization parameter
DISTRIBUTED_LOCK_TIMEOUT.Because no data has been
modified, no actions are necessary as a result of the time-out. Your
application should proceed as if a deadlock has been encountered.
For more information on distributed transactions, refer to Oracle8
Distributed Database Systems.

The following paragraphs provide guidance on when it can be advantageous to
acquire each type of table lock using the LOCK TABLEcommand.

ROW SHARE and ROW EXCLUSIVE

LOCK TABLE Emp_tab INROW SHARE MODE;
LOCK TABLE Emp_tab IN ROW EXCLUSIVE MODE;

Row share and row exclusive table locks offer the highest degree of concurrency.
Conditions that possibly warrant the explicit acquisition of a row share or row
exclusive table lock include the following:

= Your transaction needs to prevent another transaction from acquiring an
intervening share, share row, or exclusive table lock for a table before the table
can be updated in your transaction. If another transaction acquires an
intervening share, share row, or exclusive table lock, then no other transactions
can update the table until the locking transaction commits or rolls back.

= Your transaction needs to prevent a table from being altered or dropped before
the table can be modified later in your transaction.

SHARE
LOCK TABLE Emp_tab IN SHARE MODE;

Share table locks are rather restrictive data locks. The following conditions could
warrant the explicit acquisition of a share table lock:

= Your transaction only queries the table and requires a consistent set of the
table’s data for the duration of the transaction (requires transaction-level read
consistency for the locked table).

Processing SQL Statements 7-13

Explicit Data Locking

« Itis acceptable if other transactions attempting to update the locked table
concurrently must wait until all transactions with the share table locks commit
or roll back.

« Itis acceptable to allow other transactions to acquire concurrent share table
locks on the same table, also allowing them the option of transaction-level read
consistency.

Caution: Your transaction may or may not update the table later
in the same transaction. However, if multiple transactions
concurrently hold share table locks for the same table, no
transaction can update the table (even if row locks are held as the
result of a SELECT.. FOR UPDATREtatement). Therefore, if
concurrent share table locks on the same table are common,
updates cannot proceed and deadlocks are common. In this case,
use share row exclusive or exclusive table locks instead.

For example, assume that two tables, EMP_TABand BUDGET_TABrequire a
consistent set of data in a third table, DEPT_TAB For a given department number,
you want to update the information in both of these tables, and ensure that no new
members are added to the department between these two transactions.

Although this scenario is quite rare, it can be accommodated by locking the DEPT _
TABtable in SHARE MODEs shown in the following example. Because the DEPT_
TABtable is not highly volatile, few, if any, users would need to update it while it
was locked for the updates to EMP_TABand BUDGET_TAB

7-14 Application Developer's Guide - Fundamentals

Explicit Data Locking

Note: You may need to set up data structures similar to the
following for certain examples to work:

CREATE TABLE dept_tab(
deptno NUMBER(2) NOT NULL,
dname VARCHAR2(14),
loc VARCHAR2(13));

CREATE TABLE emp_tab (
empno NUMBER(4) NOT NULL,
ename VARCHAR2(10),
job VARCHAR2(9),
mgr NUMBER(4),
hiredate DATE,
sal NUMBER(7,2),
comm NUMBER(7,2),
deptno NUMBER(2));

CREATE TABLE Budget tab (
totsal NUMBER(7,2),
deptno NUMBER(2) NOT NULLY);

LOCK TABLE Dept_tab IN SHARE MODE;
UPDATE Emp_tab
SETsal=sal*1.1
WHERE deptno IN
(SELECT deptno FROM Dept_tab WHERE loc ='DALLAS);
UPDATE Budget tab
SET Totsal=Totsal * 1.1
WHERE Deptno IN
(SELECT Deptno FROM Dept_tab WHERE Loc ='DALLAS);

COMMIT; # This releases the lock */

SHARE ROW EXCLUSIVE
LOCK TABLE Emp_tab IN SHARE ROW EXCLUSIVE MODE;

Conditions that warrant the explicit acquisition of a share row exclusive table lock
include the following:

« Your transaction requires both transaction-level read consistency for the
specified table and the ability to update the locked table.

Processing SQL Statements 7-15

Explicit Data Locking

« You are not concerned about explicit row locks being obtained (via SELECT..
FOR UPDATHby other transactions, which may or may not make UPDATEand
INSERT statements in the locking transaction wait to update the table
(deadlocks might be observed).

« You only want a single transaction to have the above behavior.

EXCLUSIVE
LOCK TABLE Emp_tab IN EXCLUSIVE MODE;

Conditions that warrant the explicit acquisition of an exclusive table lock include
the following:

= Your transaction requires immediate update access to the locked table.
Therefore, if your transaction holds an exclusive table lock, then other
transactions cannot lock specific rows in the locked table.

= Your transaction also observes transaction-level read consistency for the locked
table until the transaction is committed or rolled back.

= You are not concerned about low levels of data concurrency, making
transactions that request exclusive table locks wait in line to update the table
sequentially.

Privileges Required

You can automatically acquire any type of table lock on tables in your schema;
however, to acquire a table lock on a table in another schema, you must have the
LOCK ANY TABLBystem privilege or any object privilege (for example, SELECTor
UPDATE for the table.

Letting Oracle Control Table Locking

Letting Oracle control table locking means your application needs less
programming logic, but also has less control, than if you manage the table locks
yourself.

Issuing the command SET TRANSACTION ISOLATION LEVEL SERIALIZABLEr
ALTER SESSION ISOLATION LEVEL SERIALIZABLE preserves ANSI
serializability without changing the underlying locking protocol. This technique
allows concurrent access to the table while providing ANSI serializability. Getting
table locks greatly reduces concurrency.

7-16 Application Developer's Guide - Fundamentals

Explicit Data Locking

Table locks are also controlled by the ROW_LOCKIN@nd SERIALIZABLE
initialization parameters. By default, SERIALIZABLE is set to FALSEand ROW _
LOCKINGIs set to ALWAYSIn almost every case, these parameters should not be
altered. They are provided for sites that must run in ANSI/ISO compatible mode,
or that want to use applications written to run with earlier versions of Oracle. Only
these sites should consider altering these parameters, as there is a significant
performance degradation caused by using other than the defaults.

See Also: Oracle8i SQL Reference for details about the SET
TRANSACTION and ALTER SESSION commands.

The settings for these parameters should be changed only when an instance is shut
down. If multiple instances are accessing a single database, then all instances
should use the same setting for these parameters.

Summary of Non-Default Locking Options

Three combinations of settings for SERIALIZABLE and ROW_LOCKINGther than
the default settings, are available to change the way locking occurs for transactions.
Table 7-1 summarizes the non-default settings and why you might choose to
execute your transactions in a non-default way.

Table 7-1 Summary of Non-Default Locking Options

Case Description SERIALIZABLE ROW_LOCKING

1 Equivalent to Version 5 and earlier Oracle Disabled INTENT
releases (no concurrent inserts, updates, or (default)
deletes in a table)

2 ANSI compatible Enabled ALWAYS

3 ANSI compatible, with table-level locking (no Enabled INTENT
concurrent inserts, updates, or deletes in a
table)

Table 7-2 illustrates the difference in locking behavior resulting from the three
possible settings of the SERIALIZABLE option and ROW_LOCKING@itialization
parameter, as shown in Table 7-1.

Processing SQL Statements 7-17

Explicit Data Locking

Table 7-2 Non-default Locking Behavior
STATEMENT CASE 1 CASE 2 CASE 3

row table row table row table

SELECT - - - S - S
INSERT X SRX X RX X SRX
UPDATE X SRX X SRX X SRX
DELETE X SRX X SRX X SRX
SELECT...FOR UPDATE X RS X S X S
LOCK TABLE... IN..

ROW SHARE MODE - RS - RS - RS
ROW EXCLUSIVE MODE - RX - RX - RX
SHARE MODE - S - S - S
SHARE ROW EXCLUSIVE MODE - SRX - SRX - SRX
EXCLUSIVE MODE - X - X - X
DDL statements - X - X - X

Explicitly Acquiring Row Locks
You can override default locking with a SELECTstatement that includes the FOR
UPDATEclause. SELECT.. FOR UPDATHEs used to acquire exclusive row locks for

selected rows (as an UPDATEstatement does) in anticipation of actually updating
the selected rows.

You can use a SELECT.. FOR UPDATREtatement to lock a row without actually
changing it. For example, several triggers in Chapter 12, "Using Triggers", show
how to implement referential integrity. In the EMP_DEPT_CHECKigger (see
"Foreign Key Trigger for Child Table"), the row that contains the referenced parent
key value is locked to guarantee that it remains for the duration of the transaction; if
the parent key is updated or deleted, referential integrity would be violated.

SELECT.. FOR UPDATEtatements are often used by interactive programs that allow
a user to modify fields of one or more specific rows (which might take some time);
row locks on the rows are acquired so that only a single interactive program user is
updating the rows at any given time.

If a SELECT.. FOR UPDATREtatement is used when defining a cursor, then the rows
in the return set are locked before the first fetch, when the cursor is opened; rows

7-18 Application Developer's Guide - Fundamentals

Explicit Data Locking

are not individually locked as they are fetched from the cursor. Locks are only
released when the transaction that opened the cursor is committed or rolled back;
locks are not released when a cursor is closed.

Each row in the return set of a SELECT.. FOR UPDATEtatement is locked
individually; the SELECT.. FOR UPDATEtatement waits until the other transaction
releases the conflicting row lock. Therefore, if a SELECT.. FOR UPDATEtatement
locks many rows in a table, and if the table experiences reasonable update activity,
then it would most likely improve performance if you instead acquired an exclusive
table lock.

When acquiring row locks with SELECT.. FOR UPDATEyou can indicate if you do
or do not want to wait to acquire the lock. If you specify the NOWAIToption, then
you only acquire the row lock if it is immediately possible. Otherwise, an error is
returned to notify you that the lock is not possible at this time. In this case, you can
attempt to lock the row later.

If NOWAITis omitted, then the transaction does not proceed until the requested row
lock is acquired. If the wait for a row lock is excessive, then users might want to
cancel the lock operation and retry later; you can code such logic into your
applications.

As described on "Choosing a Locking Strategy"” on page 7-12, a distributed
transaction waiting for a row lock can time-out waiting for the requested lock if the
elapsed amount of time reaches the interval set by the initialization parameter
DISTRIBUTED_LOCK_TIMEOUT.

Processing SQL Statements 7-19

User Locks

User Locks

Creating User Locks

You can use Oracle Lock Management services for your applications. It is possible
to request a lock of a specific mode, give it a unique name recognizable in another
procedure in the same or another instance, change the lock mode, and release it.
Because a reserved user lock is the same as an Oracle lock, it has all the
functionality of an Oracle lock, such as deadlock detection. Be certain that any user
locks used in distributed transactions are released upon COMMITor an undetected
deadlock may occur.

See Also: Oracle8i Supplied PL/SQL Packages Reference has detailed
information on the DBMS_LOCIKackage.

Sample User Locks
Some uses of user locks are:

« Providing exclusive access to a device, such as a terminal

« Providing application-level enforcement of read locks

« Detect when a lock is released and cleanup after the application
« Synchronizing applications and enforce sequential processing

The following Pro*COBOL precompiler example shows how locks can be used to
ensure that there are no conflicts when multiple people need to access a single
device.

*Print Check *

* Any cashier may issue a refund to a customer retuming goods. *
* Refunds under $50 are givenin cash, above thatby check. *
*This code prints the check. The one printer is opened by all *
*the cashiers to avoid the overhead of opening and closing it *
for every check. This means that lines of output from multiple

* cashiers could become interleaved if we don't ensure exclusive*
*access to the printer. The DBMS_LOCK packageisusedto *
* ensure exclusive access. *

CHECK-PRINT

*

* Getthe lock "handle" for the printer lock.
MOVE "CHECKPRINT" TO LOCKNAME-ARR.

7-20 Application Developer's Guide - Fundamentals

User Locks

MOVE 10 TO LOCKNAME-LEN.

EXEC SQL EXECUTE

BEGIN DBMS_LOCKALLOCATE._UNIQUE (:LOCKNAME, L OCKHANDLE);

END; END-EXEC.

*

* Lock the printer in exclusive mode (default mode).

EXEC SQL EXECUTE

BEGIN DBMS_LOCK.REQUEST (:LOCKHANDLE);

END; END-EXEC.

* We now have exclusive use of the printer, print the check.

*

* Unlock the printer so other people can use it

*

EXEC SQL EXECUTE

BEGIN DBMS_LOCK.RELEASE (:LOCKHANDLE);

END; END-EXEC.

Viewing and Monitoring Locks

Oracle provides two facilities to display locking information for ongoing
transactions within an instance:

Enterprise Manager
Monitors

(Lock and Latch Monitors)

UTLLOCKT.SQL

The Monitor feature of Enterprise Manager provides
two monitors for displaying lock information of an
instance. Refer to Oracle Enterprise Manager
Administrator’s Guide for complete information about
the Enterprise Manager monitors.

The UTLLOCKTSQLscript displays a simple character
lock wait-for graph in tree structured fashion. Using
any ad hoc SQL tool (such as SQL*Plus) to execute the
script, it prints the sessions in the system that are
waiting for locks and the corresponding blocking
locks. The location of this script file is operating
system dependent. (You must have run the
CATBLOCKSQLscript before using UTLLOCKTSQL)

Processing SQL Statements 7-21

Concurrency Control Using Serializable Transactions

Concurrency Control Using Serializable Transactions

By default, the Oracle Server permits concurrently executing transactions to modify,
add, or delete rows in the same table, and in the same data block. Changes made by
one transaction are not seen by another concurrent transaction until the transaction

that made the changes commits.

If a transaction A attempts to update or delete a row that has been locked by
another transaction B (by way of a DML or SELECT.. FOR UPDATEtatement), then
A’s DML command blocks until B commits or rolls back. Once B commits,
transaction A can see changes that B has made to the database.

For most applications, this concurrency model is the appropriate one. In some cases,
however, it is advantageous to allow transactions to be serializable. Serializable
transactions must execute in such a way that they appear to be executing one at a
time (serially), rather than concurrently. In other words, concurrent transactions
executing in serialized mode are only permitted to make database changes that they
could have made if the transactions were scheduled to run one after the other.

The ANSI/ZISO SQL standard SQL92 defines three possible kinds of transaction
interaction, and four levels of isolation that provide increasing protection against
these interactions. These interactions and isolation levels are summarized in
Table 7-3.

Table 7-3 ANSI Isolation Levels

Isolation Level Dirty Read (1) Non-Repeatable Read (2) Phantom Read (3)
READ UNCOMMITTED Possible Possible Possible

READ COMMITTED Not possible Possible Possible
REPEATABLE READ Not possible Not possible Possible
SERIALIZABLE Not possible Not possible Not possible
Notes: (1) A transaction can read uncommitted data changed by another

transaction.

(2) A transaction re-read data committed by another transaction
and sees the new data.

(3) A transaction can re-execute a query, and discover new rows
inserted by another committed transaction.

The behavior of Oracle with respect to these isolation levels is summarized below:

7-22 Application Developer's Guide - Fundamentals

Concurrency Control Using Serializable Transactions

READ UNCOMMITTED Oracle never permits "dirty reads.” This is not required for

READ COMMITTED

REPEATABLE READ

SERIALIZABLE

high throughput with Oracle.

Oracle meets the READ COMMITTEiDolation standard.
This is the default mode for all Oracle applications. Note
that because an Oracle query only sees data that was
committed at the beginning of the query (the snapshot
time), Oracle offers more consistency than actually
required by the ANSI/ZISO SQL92 standards for READ
COMMITTEDsolation.

Oracle does not support this isolation level, except as
provided by SERIALIZABLE .

You can set this isolation level using the SET
TRANSACTIONommand or the ALTER SESSION
command, as described on.

Processing SQL Statements 7-23

Concurrency Control Using Serializable Transactions

Figure 7-2 Time Line for Two Transactions

TIME

TRANSACTION A

(arbitrary)

begin work
update row 2
in block 1

insert row 4]

commit

Issue update
"too recent" for B
to see

Change other row in

same block, see own
changes

Create possible
"phantom" row

Uncommitted changes
invisible

Make changes visible
to transactions that
begin later

Make changes
after A commits

B can see its own
changes but not the

committed changes of
transaction A.

Failure on attempt to
update row updated
& committed since

transaction B began

7-24 Application Developer's Guide - Fundamentals

TRANSACTION B
(serializable)

SET TRANSACTION
ISOLATION LEVEL <&
SERIALIZABLE

read row 1 in block 1

update row 1 in block 1
read updated row 1 in
block 1

read old row 2 in block 1
search for row 4
(notfound)

update row 3 in block 1

re-read updated row 1
in block 1
search for row 4 (not found)
read old row 2 in block 1

update row 2 in block 1 —
FAILS; rollback and retry

Concurrency Control Using Serializable Transactions

Serializable Transaction Interaction

Figure 7-3 on page 7-27 shows how a serializable transaction (Transaction B)
interacts with another transaction (A, which can be either SERIALIZABLE or READ
COMMITTED

When a serializable transaction fails with an ORA-08177 error ("cannot serialize
access"), the application can take any of several actions:

« Commit the work executed to that point

« Execute additional, different, statements, perhaps after rolling back to a prior
savepoint in the transaction

« Roll back the entire transaction and try it again

Oracle stores control information in each data block to manage access by concurrent
transactions. To use the SERIALIZABLE isolation level, you must use the
INITRANS clause of the CREATE TABLBr ALTER TABLEcommand to set aside
storage for this control information. To use serializable mode, INITRANS must be
set to at least 3.

Setting the Isolation Level
You can change the isolation level of a transaction using the ISOLATION LEVEL
clause of the SET TRANSACTIONMommand. The SET TRANSACTIONommand
must be the first command issued in a transaction. If it is not, then the following
error is issued:

ORA-01453; SET TRANSACTION must be first statement of transaction

Use the ALTER SESSION:ommand to set the transaction isolation level on a
session-wide basis.

See Also: Oracle8i Reference for the complete syntax of the SET
TRANSACTIONind ALTER SESSIONcommands.

The INITRANS Parameter

Oracle stores control information in each data block to manage access by concurrent
transactions. Therefore, if you set the transaction isolation level to serializable, then
you must use the ALTER TABLEcommand to set INITRANS to at least 3. This
parameter causes Oracle to allocate sufficient storage in each block to record the
history of recent transactions that accessed the block. Higher values should be used
for tables that will undergo many transactions updating the same blocks.

Processing SQL Statements 7-25

Concurrency Control Using Serializable Transactions

Referential Integrity and Serializable Transactions

Because Oracle does not use read locks, even in SERIALIZABLE transactions, data
read by one transaction can be overwritten by another. Transactions that perform
database consistency checks at the application level should not assume that the data
they read will not change during the execution of the transaction (even though such
changes are not visible to the transaction). Database inconsistencies can result
unless such application-level consistency checks are coded carefully, even when
using SERIALIZABLE transactions. Note, however, that the examples shown in
this section are applicable for both READ COMMITTE&nhd SERIALIZABLE
transactions.

Figure 7-3 on page 7-27 two different transactions that perform application-level
checks to maintain the referential integrity parent/child relationship between two
tables. One transaction reads the parent table to determine that a row with a specific
primary key value exists before inserting corresponding child rows. The other
transaction checks to see that no corresponding detail rows exist before proceeding
to delete a parent row. In this case, both transactions assume (but do not ensure)
that data they read will not change before the transaction completes.

7-26 Application Developer's Guide - Fundamentals

Concurrency Control Using Serializable Transactions

Figure 7-3 Referential Integrity Check

B's query does

not prevent this

gl TRANSACTION A TRANSACTION B
read parent (it exists) read child rows (not found)
» insert child row(s) delete parent <=
commit work commit work

A's query does

not prevent this
delete

Note that the read issued by transaction A does not prevent transaction B from
deleting the parent row. Likewise, transaction B’s query for child rows does not
prevent the insertion of child rows by transaction A. Therefore the above scenario
leaves in the database a child row with no corresponding parent row. This result
would occur even if both A and B are SERIALIZABLE transactions, because neither
transaction prevents the other from making changes in the data it reads to check
consistency.

As this example illustrates, for some transactions, application developers must
specifically ensure that the data read by one transaction is not concurrently written
by another. This requires a greater degree of transaction isolation than defined by
SQL92 SERIALIZABLE mode.

Processing SQL Statements 7-27

Concurrency Control Using Serializable Transactions

Using SELECT FOR UPDATE

Fortunately, it is straightforward in Oracle to prevent the anomaly described above.
Transaction A can use SELECT FOR UPDAT® query and lock the parent row and
thereby prevent transaction B from deleting the row. Transaction B can prevent
Transaction A from gaining access to the parent row by reversing the order of its
processing steps. Transaction B first deletes the parent row, and then rolls back if its
subsequent query detects the presence of corresponding rows in the child table.

Referential integrity can also be enforced in Oracle using database triggers, instead
of a separate query as in Transaction A above. For example, an INSERT into the child
table can fire a PRE-INSERT row-level trigger to check for the corresponding parent
row. The trigger queries the parent table using SELECT FOR UPDATENsuring that
parent row (if it exists) remains in the database for the duration of the transaction
inserting the child row. If the corresponding parent row does not exist, then the
trigger rejects the insert of the child row.

SQL statements issued by a database trigger execute in the context of the SQL
statement that caused the trigger to fire. All SQL statements executed within a
trigger see the database in the same state as the triggering statement. Thus, in a
READ COMMITTEansaction, the SQL statements in a trigger see the database as of
the beginning of the triggering statement’s execution, and in a transaction executing
in SERIALIZABLE mode, the SQL statements see the database as of the beginning
of the transaction. In either case, the use of SELECT FOR UPDATI®y the trigger
correctly enforces referential integrity, as explained above.

READ COMMITTED and SERIALIZABLE Isolation

Oracle gives the application developer a choice of two transaction isolation levels
with different characteristics. Both the READ COMMITTE&hd SERIALIZABLE
isolation levels provide a high degree of consistency and concurrency. Both levels
provide the contention-reducing benefits of Oracle’s "read consistency"
multi-version concurrency control model and exclusive row-level locking
implementation, and are designed for real-world application deployment. The rest
of this section compares the two isolation modes and provides information helpful
in choosing between them.

Transaction Set Consistency

A useful way to describe the READ COMMITTE&hd SERIALIZABLE isolation levels
in Oracle is to consider the following:

7-28 Application Developer's Guide - Fundamentals

Concurrency Control Using Serializable Transactions

« A collection of database tables (or any set of data)
« A particular sequence of reads of rows in those tables
« The set of transactions committed at any particular time

An operation (a query or a transaction) is "transaction set consistent" if all its reads
return data written by the same set of committed transactions. In an operation that
is not transaction set consistent, some reads reflect the changes of one set of
transactions, and other reads reflect changes made by other transactions. An
operation that is not transaction set consistent in effect sees the database in a state
that reflects no single set of committed transactions.

Oracle provides transactions executing in READ COMMITTE®ode with transaction
set consistency on a per-statement basis (because all rows read by a query must
have been committed before the query began). Similarly, Oracle SERIALIZABLE
mode provides transaction set consistency on a per-transaction basis, because all
statements in a SERIALIZABLE transaction execute with respect to an image of the
database as of the beginning of the transaction.

In other database systems (unlike in Oracle), a single query run in READ
COMMITTEDnode provides results that are not transaction set consistent. The query
is not transaction set consistent, because it may see only a subset of the changes
made by another transaction. This means, for example, that a join of a master table
with a detail table could see a master record inserted by another transaction, but not
the corresponding details inserted by that transaction, or vice versa. Oracle’s READ
COMMITTEDnNode does not experience this effect, and so provides a greater degree
of consistency than read-locking systems.

In read-locking systems, at the cost of preventing concurrent updates, SQL92
REPEATABLE REABolation provides transaction set consistency at the statement
level, but not at the transaction level. The absence of phantom protection means two
gueries issued by the same transaction can see data committed by different sets of
other transactions. Only the throughput-limiting and deadlock-susceptible
SERIALIZABLE mode in these systems provides transaction set consistency at the
transaction level.

Functionality Comparison Summary

Table 7-4 summarizes key similarities and differences between READ COMMITTED
and SERIALIZABLE transactions.

Processing SQL Statements 7-29

Concurrency Control Using Serializable Transactions

Table 7-4 Read Committed vs. Serializable Transaction

Read Committed Serializable

Dirty write Not Possible Not Possible
Dirty read Not Possible Not Possible
Non-repeatable read Possible Not Possible
Phantoms Possible Not Possible
Compliant with ANSI/ZISO SQL 92 Yes Yes

Read snapshot time Statement Transaction
Transaction set consistency Statement level Transaction level
Row-level locking Yes Yes

Readers block writers No No

Writers block readers No No
Different-row writers block writers No No
Same-row writers block writers Yes Yes

Waits for blocking transaction Yes Yes

Subject to "can’t serialize access" error No Yes

Error after blocking transaction aborts No No

Error a_lfter blocking transaction No Yes
commits

Choosing an Isolation Level

Application designers and developers should choose an isolation level that is
appropriate to the specific application and workload, and may choose different
isolation levels for different transactions. The choice should be based on
performance and consistency needs, and consideration of application coding
requirements.

For environments with many concurrent users rapidly submitting transactions,
designers must assess transaction performance requirements in terms of the
expected transaction arrival rate and response time demands, and choose an
isolation level that provides the required degree of consistency while satisfying
performance expectations. Frequently, for high performance environments, the
choice of isolation levels involves making a trade-off between consistency and
concurrency (transaction throughput).

7-30 Application Developer's Guide - Fundamentals

Concurrency Control Using Serializable Transactions

Both Oracle isolation modes provide high levels of consistency and concurrency
(and performance) through the combination of row-level locking and Oracle’s
multi-version concurrency control system. Because readers and writers don’t block
one another in Oracle, while queries still see consistent data, both READ
COMMITTERNd SERIALIZABLE isolation provide a high level of concurrency for
high performance, without the need for reading uncommitted ("dirty") data.

READ COMMITTEDolation can provide considerably more concurrency with a
somewhat increased risk of inconsistent results (due to phantoms and
non-repeatable reads) for some transactions. The SERIALIZABLE isolation level
provides somewhat more consistency by protecting against phantoms and
non-repeatable reads, and may be important where a read/write transaction
executes a query more than once. However, SERIALIZABLE mode requires
applications to check for the "can’t serialize access" error, and can significantly
reduce throughput in an environment with many concurrent transactions accessing
the same data for update. Application logic that checks database consistency must
take into account the fact reads don’t block writes in either mode.

Application Tips

When a transaction runs in serializable mode, any attempt to change data that was
changed by another transaction since the beginning of the serializable transaction
results in the following error:

ORA-08177: Cant serialize access for this transaction.
When you get an ORA-08177 error, the appropriate action is to roll back the current

transaction, and re-execute it. After a rollback, the transaction acquires a new
transaction snapshot, and the DML operation is likely to succeed.

Because a rollback and repeat of the transaction is required, it is good development
practice to put DML statements that might conflict with other concurrent
transactions towards the beginning of your transaction, whenever possible.

Processing SQL Statements 7-31

Autonomous Transactions

Autonomous Transactions

This section gives a brief overview of autonomous transactions and what you can
do with them.

See Also: For detailed information on autonomous transactions,
see PL/SQL User’s Guide and Reference and Chapter 12, "Using
Triggers".

At times, you may want to commit or roll back some changes to a table
independently of a primary transaction’s final outcome. For example, in a stock
purchase transaction, you may want to commit a customer’s information regardless
of whether the overall stock purchase actually goes through. Or, while running that
same transaction, you may want to log error messages to a debug table even if the
overall transaction rolls back. Autonomous transactions allow you to do such tasks.

An autonomous transaction (AT) is an independent transaction started by another
transaction, the main transaction (MT). It lets you suspend the main transaction, do
SQL operations, commit, or roll back those operations, then resume the main
transaction.

An autonomous transaction executes within an autonomous scope. An autonomous
scope is a routine you mark with the pragma (compiler directive) AUTONOMOUS _
TRANSACTIONThe pragma instructs the PL/SQL compiler to mark a routine as
autonomous (independent). In this context, the term routine includes:

« Top-level (not nested) anonymous PL/SQL blocks

« Local, stand-alone, and packaged functions and procedures
« Methods of a SQL object type

« PL/SQL triggers

Figure 7-4 shows how control flows from the main routine (MT) to an autonomous
routine (AT) and back again. As you can see, the autonomous routine can commit
more than one transaction (AT1 and AT2) before control returns to the main routine.

7-32 Application Developer's Guide - Fundamentals

Autonomous Transactions

Figure 7-4 Transaction Control Flow

Main Routine

PROCEDURE procl IS
emp_id NUMBER;
BEGIN
emp_id := 7788;
INSERT ...
SELECT ...
proc2;

— MT begins

Autonomous Routine

DELETE ...
COMMIT;
END;

— 1 MT ends

v

PROCEDURE proc2 IS
PRAGMA AUTON...
dept_id NUMBER,;

BEGIN

MT suspends

dept_id := 20;

UPDATE ... ———+— AT1 begins

INSERT ...

UPDATE ...

COMMIT; — AT1 ends

INSERT ... ———1— AT2 begins

INSERT ...

COMMIT; — AT2 ends
END; MT resumes

When you enter the executable section of an autonomous routine, the main
transaction suspends. When you exit the routine, the main transaction resumes.
COMMITand ROLLBACkKend the active autonomous transaction but do not exit the
autonomous routine. As Figure 7-4 shows, when one transaction ends, the next SQL

statement begins another transaction.

A few more characteristics of autonomous transactions:

« The changes autonomous transactions effect do not depend on the state or the

eventual disposition of the main transaction. For example:

— Anautonomous transaction does not see any changes made by the main

transaction.

— When an autonomous transaction commits or rolls back, it does not affect
the outcome of the main transaction.

= The changes an autonomous transaction effects are visible to other transactions
as soon as that autonomous transaction commits. This means that users can
access the updated information without having to wait for the main transaction

to commit.

. Autonomous transactions can start other autonomous transactions.

Figure 7-5 illustrates some of the possible sequences autonomous transactions can

follow.

Processing SQL Statements 7-33

Autonomous Transactions

Figure 7-5 Possible Sequences of Autonomous Transactions

A main transaction scope

(MT Scope) begins the main
fransaction, MTx. MTx MT Scope AT Scope 1 AT Scope 2 AT Scope 3 AT Scope 4

invokes the first autonomous
transaction scope (AT MTx
Scopel). MTx suspends. AT
Scope 1 begins the

transaction Tx1.1. Tx1.1

A\ 4

A

At Scope 1 commits or rolls MT
back Tx1.1, than ends. MTx X ><
resumes.

MTx invokes AT Scope 2.
MT suspends, passing g
control to AT Scope 2 which,
initially, is performing queries.

AT Scope 2 then begins
Tx2.1 by, say, doing an
update. AT Scope 2 commits
or rolls back Tx2.1.

Tx2.1

Later, AT Scope 2 begins a
second transaction, Tx2.2, Tx22
then commits or rolls it back.

AT Scope 2 performs a few
queries, then ends, passing MTx ><
control back to MTx.

MTx invokes AT Scope 3.

MTx suspends, AT Scope 3
begins.

A 4

Tx3.1

AT Scope 3 begins Tx3.1
which, in turn, invokes AT
Scope 4. Tx3.1 suspends, AT
Scope 4 begins.

Tx4.1

AT Scope 4 begins Tx4.1,
commits or rolls it back, then
ends. AT Scope 3 resumes.

AT Scope 3 commits or rolls ™31 hl
back Tx3.1, then ends. MTx)

resumes.

A

Finally, MT Scope commits MTx
or rolls back MTx, then ends.

X

7-34 Application Developer's Guide - Fundamentals

Autonomous Transactions

Examples

The two examples in this section illustrate some of the ways you can use
autonomous transactions.

As these examples illustrate, there are four possible outcomes that can occur when
you use autonomous and main transactions. The following table presents these
possible outcomes. As you can see, there is no dependency between the outcome of
an autonomous transaction and that of a main transaction.

Autonomous Transaction Main Transaction
Commits Commits
Commits Rolls back
Rolls back Commits

Rolls back Rolls back

Entering a Buy Order

In this example, a customer enters a buy order. That customer’s information (e.g.,
name, address, phone) is committed to a customer information table—even though
the sale does not go through.

Processing SQL Statements 7-35

Autonomous Transactions

Figure 7-6 Example: A Buy Order

MT Scope begins the main
transaction, MTx inserts the
buy order into a table. M m

MTx invokes the autonomous MTx
transaction scope (AT
Scope). When AT Scope ATx
begins, MT Scope suspends.

ATX, updates the audit table
with customer information.

MTx seeks to validate the MTx ><

order, finds that the selected

item is unavailable, and

therefore rolls back the main

transaction.

Example: Making a Bank Withdrawal

In the following banking application, a customer tries to make a withdrawal from
his or her account. In the process, a main transaction calls one of two autonomous
transaction scopes (AT Scope 1, and AT Scope 2).

A

The following diagrams illustrate three possible scenarios for this transaction.

« Scenario 1: There are sufficient funds to cover the withdrawal and therefore the
bank releases the funds

« Scenario 2: There are insufficient funds to cover the withdrawal, but the
customer has overdraft protection. The bank therefore releases the funds.

= Scenario 3: There are insufficient funds to cover the withdrawal, the customer
does not have overdraft protection, and the bank therefore withholds the
requested funds.

7-36 Application Developer's Guide - Fundamentals

Autonomous Transactions

Scenario 1;

There are sufficient funds to cover the withdrawal and therefore the bank releases
the funds

Figure 7-7 Example: Bank Withdrawal—Sufficient Funds

MTx generates a

transaction ID. MT Scope AT Scope 1 AT Scope 2

MTx

Tx1.1 inserts the transaction Tx11
ID into the audit table and XL
commits.

A

MTx validates the balance on
the account. MTx ><

Tx2.1, updates the audit table > o1
using the transaction 1D Xe.
generated above, then
commits.

A

MTx releases the funds. MT MT
Scope ends. X ><

Processing SQL Statements 7-37

Autonomous Transactions

Scenario 2;

There are insufficient funds to cover the withdrawal, but the customer has overdraft
protection. The bank therefore releases the funds.

Figure 7-8 Example: Bank Withdrawal—Insufficient Funds WITH Overdraft Protection

MT Scope AT Scope 1 AT Scope 2

MTx

Tx1.1

insufficient funds to cover the MTx
withdrawal. It finds that the
customer has overdraft
protection and sets a flag to
the appropriate value.

MTx discovers that there are < ><

Tx2.1, updates the >

audit table. ™21

A

MTX, releases the funds. MT MT
Scope ends. X ><

7-38 Application Developer's Guide - Fundamentals

Autonomous Transactions

Scenario 3;

There are insufficient funds to cover the withdrawal, the customer does not have
overdraft protection, and the bank therefore withholds the requested funds.

Figure 7-9 Example: Bank Withdrawal—Insufficient Funds WITHOUT Overdraft

Protection

MTx discovers that there are
insufficient funds to cover the
withdrawal. It finds that the
customer does not have
overdraft protection and sets
a flag to the appropriate
value.

Tx2.1, updates the
audit table.

MTx Scope rolls back MTx,
denying the release of funds.
MT Scope ends.

MT Scope AT Scope 1 AT Scope 2
MTx
>
Tx1.1
dl
o
MTx ><
> Tx2.1
dl
o
MTx

Processing SQL Statements 7-39

Autonomous Transactions

Defining Autonomous Transactions

Note: This section is provided here to round out your general
understanding of autonomous transactions. For a more thorough
understanding of autonomous transactions, see PL/SQL User’s Guide
and Reference.

To define autonomous transactions, you use the pragma (compiler directive)
AUTONOMOUS_TRANSACTIONe pragma instructs the PL/SQL compiler to mark
the procedure, function, or PL/SQL block as autonomous (independent).

You can code the pragma anywhere in the declarative section of a procedure,
function, or PL/SQL block. But, for readability, code the pragma at the top of the
section. The syntax follows:

PRAGMA AUTONOMOUS_TRANSACTION;

In the following example, you mark a packaged function as autonomous:

CREATE OR REPLACE PACKAGE Banking AS
FUNCTION Balance (Acct_id INTEGER) RETURN REAL;
— add additional functions and/or packages

END Banking;

CREATE OR REPLACE PACKAGE BODY Banking AS
FUNCTION Balance (Acct_id INTEGER) RETURN REAL IS
PRAGMA AUTONOMOUS_TRANSACTION;
My_bal REAL;
BEGIN
—add appropriate code
END;
— add additional functions and/or packages...
END Banking;

You cannot use the pragma to mark all subprograms in a package (or all methods in
an object type) as autonomous. Only individual routines can be marked
autonomous. For example, the following pragma is illegal:

CREATE OR REPLACE PACKAGE Banking AS
PRAGMA AUTONOMOUS_TRANSACTION; —illegal
FUNCTION Balance (Acct_id INTEGER) RETURN REAL;
END Banking;

7-40 Application Developer's Guide - Fundamentals

8

Dynamic SQL

Dynamic SQL is a programming technique that enables you to build SQL
statements dynamically at runtime. You can create more general purpose, flexible
applications by using dynamic SQL because the full text of a SQL statement may be
unknown at compilation. For example, dynamic SQL lets you create a procedure
that operates on a table whose name is not known until runtime.

In past releases of Oracle, the only way to implement dynamic SQL in a PL/SQL
application was by using the DBMS_SQIpackage. Oracle8i introduces native
dynamic SQL, an alternative to the DBMS_SQIpackage. Using native dynamic SQL,
you can place dynamic SQL statements directly into PL/SQL blocks.

This chapter covers the following topics:

What Is Dynamic SQL?

When to Use Dynamic SQL

A Dynamic SQL Scenario Using Native Dynamic SQL
Native Dynamic SQL vs. the DBMS_SQL Package
Application Development Languages Other Than PL/SQL

Dynamic SQL 8-1

What Is Dynamic SQL?

What Is Dynamic SQL?

Dynamic SQL enables you to write programs that reference SQL statements whose
full text is not known until runtime. Before discussing dynamic SQL in detail, a
clear definition of static SQL may provide a good starting point for understanding
dynamic SQL. Static SQL statements do not change from execution to execution.
The full text of static SQL statements are known at compilation, which provides the
following benefits:

« Successful compilation verifies that the SQL statements reference valid database
objects.

« Successful compilation verifies that the necessary privileges are in place to
access the database objects.

« Performance of static SQL is generally better than dynamic SQL.

Because of these advantages, you should use dynamic SQL only if you cannot use
static SQL to accomplish your goals, or if using static SQL is cumbersome compared
to dynamic SQL. However, static SQL has limitations that can be overcome with
dynamic SQL. You may not always know the full text of the SQL statements that
must be executed in a PL/SQL procedure. Your program may accept user input that
defines the SQL statements to execute, or your program may need to complete some
processing work to determine the correct course of action. In such cases, you should
use dynamic SQL.

For example, consider a reporting application that performs standard queries on
tables in a data warehouse environment where the exact table name is unknown
until runtime. To accommodate the large amount of data in the data warehouse
efficiently, you create a new table every quarter to store the invoice information for
the quarter. These tables all have exactly the same definition and are named
according to the starting month and year of the quarter, for example INV_01_1997 ,
INV_04_1997 ,INV_07_1997 ,INV_10_1997 ,INV_01_1998 , etc. In such a case,
you can use dynamic SQL in your reporting application to specify the table name at
runtime.

With static SQL, all of the data definition information, such as table definitions,
referenced by the SQL statements in your program must be known at compilation.
If the data definition changes, you must change and recompile the program.
Dynamic SQL programs can handle changes in data definition information, because
the SQL statements can change "on the fly" at runtime. Therefore, dynamic SQL is
much more flexible than static SQL. Dynamic SQL enables you to write application
code that is reusable because the code defines a process that is independent of the
specific SQL statements used.

8-2 Application Developer's Guide - Fundamentals

When to Use Dynamic SQL

In addition, dynamic SQL lets you execute SQL statements that are not supported in
static SQL programs, such as data definition language (DDL) statements. Support
for these statements allows you to accomplish more with your PL/SQL programs.

Note: The phrase dynamic SQL programs means programs that
include dynamic SQL; such programs also can include static SQL.
Static SQL programs are those programs that include only static SQL
and no dynamic SQL.

When to Use Dynamic SQL

You should use dynamic SQL in cases where static SQL does not support the
operation you want to perform, or in cases where you do not know the exact SQL
statements that must be executed by a PL/SQL procedure. These SQL statements
may depend on user input, or they may depend on processing work done by the
program. The following sections describe typical situations where you should use
dynamic SQL and typical problems that can be solved by using dynamic SQL.

To Execute Dynamic DML Statements

You can use dynamic SQL to execute DML statements in which the exact SQL
statement is not known until runtime. For examples, see the DML examples in the
"Examples of DBMS_SQL Package Code and Native Dynamic SQL Code" on

page 8-19 and "Sample DML Operation"” on page 8-10.

To Execute Statements Not Supported by Static SQL in PL/SQL

In PL/SQL, you cannot execute the following types of statements using static SQL.:

« Data definition language (DDL) statements, such as CREATEDROPGRANTand
REVOKE

« Session control language (SCL) statements, such as ALTER SESSIONand
SET ROLE

See Also: Oracle8i SQL Reference for information about DDL and
SCL statements.

Use dynamic SQL if you need to execute any of these types of statements within a
PL/SQL block.

Dynamic SQL 8-3

When to Use Dynamic SQL

In addition, static SQL in PL/SQL does not allow the use of the TABLEclause in the
SELECTstatements. There is no such limitation in dynamic SQL. For example, the
following PL/SQL block contains a SELECTstatement that uses the TABLE clause
and native dynamic SQL.:

CREATE TYPE t_ emp AS OBJECT (id NUMBER, name VARCHAR2(20))
/

CREATE TYPEt emplist AS TABLE OFt emp

/

CREATE TABLE dept_new (id NUMBER, empst_emplist)
NESTED TABLE emps STORE AS emp_table;

INSERT INTO dept_new VALUES (
10,
t_emplist(
t emp(1,’SCOTT),
t emp(2, BRUCE)));

DECLARE
deptid NUMBER;
ename VARCHAR2(20);
BEGIN
EXECUTE IMMEDIATE 'SELECT d.id, ename
FROM dept_new d, TABLE(d.emps) e — not allowed in static SQL
—-inPL/SQL
WHEREeid=1
INTO deptid, ename;
END;
/

To Execute Dynamic Queries

You can use dynamic SQL to create applications that execute dynamic queries,
which are queries whose full text is not known until runtime. Many types of
applications need to use dynamic queries, including:

« Applications that allow users to input or choose query search or sorting criteria
at runtime

« Applications that allow users to input or choose optimizer hints at run time

« Applications that query a database where the data definitions of tables are
constantly changing

« Applications that query a database where new tables are created often

8-4 Application Developer’'s Guide - Fundamentals

When to Use Dynamic SQL

For examples, see "Query Example" on page 8-19, and see the query examples in "A
Dynamic SQL Scenario Using Native Dynamic SQL" on page 8-9.

To Reference Database Objects that Do Not Exist at Compilation

Many types of applications must interact with data that is generated periodically.
For example, it may be possible to determine the definition of the database tables at
compilation, but not the names of the tables, because new tables are being
generated periodically. Your application needs to access the data, but there is no
way to know the exact names of the tables until runtime.

Dynamic SQL can solve this problem, because dynamic SQL allows you to wait
until runtime to specify the table names you need to access. For example, in the
sample data warehouse application discussed in "What Is Dynamic SQL?" on

page 8-2, new tables are generated every quarter, and these tables always have the
same definition. In this case, you might allow a user to specify the name of the table
at runtime with a dynamic SQL query similar to the following:

CREATE OR REPLACE PROCEDURE query_invoice(
month VARCHAR2,
year VARCHAR?) IS
TYPE cur_typ IS REF CURSOR,
ceur_typ;
query_str VARCHAR2(200);
inv_num NUMBER;
inv_cust VARCHAR2(20);
inv_amt NUMBER;
BEGIN
query_str:="SELECT num, cust, amt FROM inv_' || month ||| year
[I' WHERE invnum = :idl}
OPEN ¢ FOR query_str USING inv_num;
LOOP
FETCH cINTO inv_num, inv_cust, inv_amt;
EXIT WHEN c%NOTFOUND;
— process row here
END LOOP;
CLOSECc;
END;
/

Dynamic SQL 8-5

When to Use Dynamic SQL

To Optimize Execution Dynamically

If you use static SQL, you must decide at compilation how you want to construct
your SQL statements, whether to have hints in your statements, and, if you include
hints, exactly which hints to have. However, you can use dynamic SQL to build a
SQL statement in a way that optimizes the execution and/or concatenates the hints
into a SQL statement dynamically. This allows you to change the hints based on
your current database statistics, without requiring recompilation.

For example, the following procedure uses a variable called a_hint to allow users
to pass a hint option to the SELECTstatement:

CREATE OR REPLACE PROCEDURE query_emp
(@_hint VARCHAR?) AS
TYPE cur_typ IS REF CURSOR;

ceour_typ;
BEGIN

OPEN ¢ FOR'SELECT’ || a_hint||
" empno, ename, sal, job FROM emp WHERE empno = 7566
— process
END;
/

In this example, the user can pass any of the following values for a_hint
« a_hint="/*+ ALL_ROWS */"

= a_hint ='*+ FIRST_ROWS */'

« a_hint="/*+ CHOOSE */'

« Any other valid hint option

See Also: Oracle8i Designing and Tuning for Performance for more
information about using hints.

8-6 Application Developer’'s Guide - Fundamentals

When to Use Dynamic SQL

To Invoke Dynamic PL/SQL Blocks

You can use the EXECUTE IMMEDIATEtatement to invoke anonymous PL/SQL
blocks. The ability to invoke dynamic PL/SQL blocks can be useful for application
extension and customization where the module to be executed is determined
dynamically at runtime.

For example, suppose you want to write an application that takes an event number
and dispatches to a handler for the event. The name of the handler is in the form
EVENT_HANDLERevent num , where event_num is the number of the event. One
approach would be to implement the dispatcher as a switch statement, as shown
below, where the code handles each event by making a static call to its appropriate
handler.

CREATE OR REPLACE PROCEDURE event_handler_1(param number) AS BEGIN
— process event
RETURN,;

END;

/

CREATE OR REPLACE PROCEDURE event_handler_2(param number) AS BEGIN
— process event
RETURN,;

END;

/

CREATE OR REPLACE PROCEDURE event_handler_3(param number) AS BEGIN
— process event
RETURN,;

END;

/

CREATE OR REPLACE PROCEDURE event_dispatcher
(event number, param number) IS
BEGIN
IF (event=1) THEN
EVENT_HANDLER_1(param);
ELSIF (event=2) THEN
EVENT_HANDLER_2(param);
ELSIF (event=3) THEN
EVENT_HANDLER_3(param);
ENDIF;
END;
/

Dynamic SQL 8-7

When to Use Dynamic SQL

This code is not very extensible because the dispatcher code must be updated
whenever a handler for a new event is added. However, using native dynamic SQL,
you can write an extensible event dispatcher similar to the following:

CREATE OR REPLACE PROCEDURE event_dispatcher
(eventNUMBER, param NUMBER) IS
BEGIN
EXECUTE IMMEDIATE
'BEGIN
EVENT_HANDLER || to_char(event) || '¢1);
END;'
USING param;
END;
/

To Perform Dynamic Operations Using Invoker-Rights

By using the invoker-rights feature with dynamic SQL, you can build applications
that issue dynamic SQL statements under the privileges and schema of the invoker.
These two features, invoker-rights and dynamic SQL, enable you to build reusable
application subcomponents that can operate on and access the invoker’s data and
modules.

See Also: PL/SQL User’s Guide and Reference for information about
using invokers-rights and native dynamic SQL.

8-8 Application Developer’'s Guide - Fundamentals

A Dynamic SQL Scenario Using Native Dynamic SQL

A Dynamic SQL Scenario Using Native Dynamic SQL

Data Model

The scenario described in this section illustrates the power and flexibility of native
dynamic SQL. This scenario includes examples that show you how to perform the
following operations using native dynamic SQL:

« Execute DDL and DML operations

« Execute single row and multiple row queries

The database in this scenario is a company’s human resources database (named hr)
with the following data model:

A master table named offices contains the list of all company locations. The
offices table has the following definition:

Column Name Null? Type
LOCATION NOT_NULL VARCHAR2(200)

Multiple emp_location tables contain the employee information, where
location is the name of city where the office is located. For example, a table
named emp_houston contains employee information for the company’s Houston
office, while a table named emp_boston contains employee information for the
company’s Boston office.

Each emp_location table has the following definition:

Column Name Null? Type

EMPNO NOT NULL NUMBER®)
ENAVE NOT NULL VARCHAR2(10)
JoB NOT NULL VARCHAR2(9)
SAL NOT NULL NUMBER(7,2)
DEPTNO NOT NULL NUMBER(Q)

The following sections describe various native dynamic SQL operations that can be
performed on the data in the hr database.

Dynamic SQL 8-9

A Dynamic SQL Scenario Using Native Dynamic SQL

Sample DML Operation

The following native dynamic SQL procedure gives a raise to all employees with a
particular job title:

CREATE OR REPLACE PROCEDURE salary_raise (raise_percent NUMBER, job VARCHAR?) IS
TYPE loc_array_type IS TABLE OF VARCHAR2(40)
INDEX BY binary_integer;
dml_str VARCHAR2(200);
loc_array loc_array type;
BEGIN
— bulk fetch the list of office locations
SELECT location BULK COLLECT INTO loc_array
FROM offices;
—for each location, give a raise to employees with the given job'
FORIIN loc_arrayirst.loc_amay.last LOOP
dml_str:="UPDATE emp__ || loc_array(i)
|| SET sal =sal * (1+(raise_percent/100))
I WHERE job =job _title";
EXECUTE IMMEDIATE dml_str USING raise_percent, job;
END LOOP;
END,;
/

Sample DDL Operation

The EXECUTE IMMEDIATEstatement can perform DDL operations. For example,
the following procedure adds an office location:

CREATE OR REPLACE PROCEDURE add_location (loc VARCHAR2) IS
BEGIN
— insert new location in master table
INSERT INTO offices VALUES (loc);
— create an employee information table
EXECUTE IMMEDIATE
'CREATE TABLE ' || 'emp || loc ||
(
empno NUMBER(4) NOT NULL,
ename VARCHAR2(10),
job VARCHAR2(9),
sa NUMBER(7,2),
deptno NUMBER(2)

END;
/

8-10 Application Developer's Guide - Fundamentals

A Dynamic SQL Scenario Using Native Dynamic SQL

The following procedure deletes an office location:

CREATE OR REPLACE PROCEDURE drop_location (loc VARCHAR?) IS
BEGIN
— delete the employee table for location ‘loc’
EXECUTE IMMEDIATE 'DROP TABLE ' || 'emp_' || loc;
- remove location from master table
DELETE FROM offices WHERE location = loc;
END;
/

Sample Dynamic Single-Row Query

The EXECUTE IMMEDIATEtatement can perform dynamic single-row queries. You
can specify bind variables in the USINGclause and fetch the resulting row into the
target specified in the INTO clause of the statement.

The following function retrieves the number of employees at a particular location
performing a specified job:

CREATE OR REPLACE FUNCTION get_num_of_employees (loc VARCHAR?, job VARCHAR?2)
RETURN NUMBER IS
query_str VARCHAR2(1000);
num_of employees NUMBER,;

BEGIN
query_str :='SELECT COUNT(*) FROM"
[|"emp_ [|loc

[I"WHERE job =:job title";
EXECUTE IMMEDIATE query_str
INTO num_of_employees
USING job;
RETURN num_of employees;
END;
/

Dynamic SQL 8-11

Native Dynamic SQL vs. the DBMS_SQL Package

Sample Dynamic Multiple-Row Query

The OPEN-FORFETCH and CLOSEstatements can perform dynamic multiple-row
gueries. For example, the following procedure lists all of the employees with a
particular job at a specified location:

CREATE OR REPLACE PROCEDURE list employees(loc VARCHAR2, job VARCHAR?2) IS
TYPE cur_typ IS REF CURSOR,;
c cur_typ;
query_str VARCHAR2(1000);
emp_name VARCHAR2(20);
emp_num NUMBER;
BEGIN
query_str :="SELECT ename, empno FROM emp_'||loc
|| WHERE job =job _title";
—find employees who perform the specified job
OPEN ¢ FOR query_str USING job;
LOOP
FETCH cINTO emp_name, emp_num;
EXIT WHEN c%NOTFOUND;
— process row here
END LOOP;
CLOSEc¢;
END;
/

Native Dynamic SQL vs. the DBMS_SQL Package

Oracle provides two methods for using dynamic SQL within PL/SQL.: native
dynamic SQL and the DBMS_SQlpackage. Native dynamic SQL enables you to
place dynamic SQL statements directly into PL/SQL code. These dynamic
statements include DML statements (including queries), PL/SQL anonymous
blocks, DDL statements, transaction control statements, and session control
statements.

To process most native dynamic SQL statements, you use the EXECUTE IMMEDIATE
statement. However, to process a multi-row query (SELECTstatement), you use
OPEN-FORFETCH and CLOSEstatements.

Note: To use native dynamic SQL, the COMPATIBLEnitialization
parameter must be set to 8.1.0 or higher. See Oracle8i Migration for
more information about the COMPATIBLEparameter.

8-12 Application Developer's Guide - Fundamentals

Native Dynamic SQL vs. the DBMS_SQL Package

The DBMS_SQIpackage is a PL/SQL library that offers a programmatic API to
execute SQL statements dynamically. The DBMS_SQIpackage has programmatic
interfaces to open a cursor, parse a cursor, supply binds, etc. Programs that use the
DBMS_SQIlpackage make calls to this package to perform dynamic SQL operations.

The following sections provide detailed information about the advantages of both
methods.

See Also: The PL/SQL User’s Guide and Reference for detailed
information about using native dynamic SQL and the Oracle8i
Supplied PL/SQL Packages Reference for detailed information about
using the DBMS_SQIpackage. In the PL/SQL User’s Guide and
Reference, native dynamic SQL is referred to simply as

dynamic SQL.

Advantages of Native Dynamic SQL

Native dynamic SQL provides the following advantages over the DBMS_SQL
package:

Ease of Use

Native dynamic SQL is much simpler to use than the DBMS_SQIpackage. Because
native dynamic SQL is integrated with SQL, you can use it in the same way that
you currently use static SQL within PL/SQL code. In addition, native dynamic SQL
code is typically more compact and readable than equivalent code that uses the
DBMS_SQIpackage.

The DBMS_SQIpackage is not as easy to use as native dynamic SQL. There are
many procedures and functions that must be used in a strict sequence. Typically,
performing simple operations requires a large amount of code when you use the
DBMS_SQIlpackage. You can avoid this complexity by using native dynamic SQL
instead.

Dynamic SQL 8-13

Native Dynamic SQL vs. the DBMS_SQL Package

Table 8-1 illustrates the difference in the amount of code required to perform the
same operation using the DBMS_SQIpackage and native dynamic SQL.

Table 8-1 Code Comparison of DBMS_SQL Package and Native Dynamic SQL

DBMS_SQL Package

Native Dynamic SQL

CREATE PROCEDURE insett_into_table (
table_name VARCHAR?2,
deptnumber NUMBER,
deptname VARCHAR2,
location VARCHAR?) IS
cur hd INTEGER;
smt st VARCHAR2(200);
rows_processed BINARY_INTEGER;

BEGIN
stmt_str:='INSERT INTO" ||
table_name ||' VALUES
(:deptno, :dname, loc);

—0open cursor
cur_hdl:=dbms_sgl.open_cursor,

— parse cursor
dbms_sgl.parse(cur_hd|, stmt_str,
dbms_sgl.native);

- supply binds
dbms_sgl.bind_variable

(cur_hdl, deptno’, deptnumber);
dbms_sgl.bind_variable

(cur_hdl, :dname', deptname);
dbms_sqlbind_variable

(cur_hdl, *loc', location);

— execute cursor
rows_processed :=
dbms_sgl.execute(cur_hdl);

- close cursor
dbms_sgl.close_cursor(cur_hdl);

END;
/

CREATE PROCEDURE insert_into_table (
table_name VARCHAR?2,
deptnumber NUMBER,
deptname VARCHAR2,
location VARCHAR?2) IS
stmt_str VARCHAR2(200);

BEGIN
stmt_str:="INSERT INTO’ ||
table_name ||’ values
(:deptno, :dname, loc);

EXECUTE IMMEDIATE stmt_str
USING
deptnumber, deptname, location;

END;
/

8-14 Application Developer's Guide - Fundamentals

Native Dynamic SQL vs. the DBMS_SQL Package

Performance Improvements

The performance of native dynamic SQL in PL/SQL is comparable to the
performance of static SQL because the PL/SQL interpreter has built-in support for
native dynamic SQL. Therefore, the performance of programs that use native
dynamic SQL is much better than that of programs that use the DBMS_SQIpackage.
Typically, native dynamic SQL statements perform 1.5 to 3 times better than
equivalent statements that use the DBMS_SQlpackage. Of course, your
performance gains may vary depending on your application.

The DBMS_SQIpackage is based on a procedural APl and, as a result, incurs high
procedure call and data copy overhead. For example, every time you bind a
variable, the DBMS_SQIpackage copies the PL/SQL bind variable into its space for
later use during execution. Similarly, every time you execute a fetch, first the data is
copied into the space managed by the DBMS_SQIpackage and then the fetched data
is copied, one column at a time, into the appropriate PL/SQL variables, resulting in
substantial overhead resulting from data copying. In contrast, native dynamic SQL
bundles the statement preparation, binding, and execution steps into a single
operation, which minimizes the data copying and procedure call overhead and
improves performance.

Performance Tip When using either native dynamic SQL or the DBMS_SQlpackage,
you can improve performance by using bind variables, because using bind variables
allows Oracle to share a single cursor for multiple SQL statements.

For example, the following native dynamic SQL code does not use bind variables:

CREATE OR REPLACE PROCEDURE del_dept (
my_deptno deptdeptno%TYPE) IS
BEGIN
EXECUTE IMMEDIATE 'DELETE FROM dept WHERE deptno =" to_char (my_deptno);
END;
/

For each distinct my_deptno variable, a new cursor is created, which can cause
resource contention and poor performance. Instead, bind my_deptno as a bind
variable, as in the following example:

CREATE OR REPLACE PROCEDURE del _dept (
my_deptno deptdeptno%TYPE) IS
BEGIN
EXECUTE IMMEDIATE 'DELETE FROM dept WHERE deptno = :1' USING my_deptno;
END;
/

Dynamic SQL 8-15

Native Dynamic SQL vs. the DBMS_SQL Package

Here, the same cursor is reused for different values of the bind my_deptno , thereby
improving performance and scalabilty.

Support for User-Defined Types

Native dynamic SQL supports all of the types supported by static SQL in PL/SQL.
Therefore, native dynamic SQL provides support for user-defined types, such as
user-defined objects, collections, and REFs. The DBMS_SQIpackage does not
support these user-defined types.

Note: The DBMS_SQIpackage provides limited support for
arrays. See the Oracle8i Supplied PL/SQL Packages Reference for
information.

Support for Fetching Into Records

Native dynamic SQL and static SQL both support fetching into records, but the
DBMS_SQIlpackage does not. With native dynamic SQL, the rows resulting from a
guery can be directly fetched into PL/SQL records.

In the following example, the rows from a query are fetched into the emp_rec
record:

DECLARE
TYPE EmpCurTyp IS REF CURSOR;
¢ EmpCurTyp;
emp_rec emp%ROWTYPE;
stmt_str VARCHAR2(200);
e_job empjob%TYPE;

BEGIN
stmt_str :="SELECT * FROM emp WHERE job =1,
—inamulti-row query
OPEN c FOR smt_str USING 'MANAGER;
LOOP
FETCH cINTO emp_rec;
EXIT WHEN c%NOTFOUND;
END LOOP;
CLOSECc;
—inasingle-row query
EXECUTE IMMEDIATE stmt_str INTO emp_rec USING 'PRESIDENT;,

END;
/

8-16 Application Developer's Guide - Fundamentals

Native Dynamic SQL vs. the DBMS_SQL Package

Advantages of the DBMS_SQL Package

The DBMS_SQIpackage provides the following advantages over native dynamic
SQL:

Support for Client-Side Programs

Currently, the DBMS_SQIpackage is supported in client-side programs, but native
dynamic SQL is not. Every call to the DBMS_SQIpackage from the client-side
program translates to a PL/SQL remote procedure call (RPC); these calls occur
when you need to bind a variable, define a variable, or execute a statement.

Support for DESCRIBE

The DESCRIBE_COLUMNSocedure in the DBMS_SQIpackage can be used to
describe the columns for a cursor opened and parsed through DBMS_SQLThe
functionality is similar to the DESCRIBEcommand in SQL*Plus. Native dynamic
SQL does not have a DESCRIBEfacility.

Support for Bulk Dynamic SQL

Bulk SQL is the ability to process multiple rows of data in a single DML statement.
Bulk SQL improves performance by reducing the amount of context switching
between SQL and the host language. Currently, the DBMS_SQIpackage supports
bulk dynamic SQL.

Although there is no direct support for bulk operations in native dynamic SQL, you
can simulate a native dynamic bulk SQL statement by placing the bulk SQL
statement in a 'BEGIN ... END block and executing the block dynamically. This
workaround enables you to realize the benefits of bulk SQL within a native
dynamic SQL program. For example, the following native dynamic SQL code copies
the ename column of one table to another:

CREATE TYPE name_array_type IS
VARRAY(100) of VARCHAR2(50)
/

CREATE OR REPLACE PROCEDURE copy_ename_column

(tablel VARCHAR?, table2 VARCHAR?) IS
ename_col NAME_ARRAY_TYPE;

Dynamic SQL 8-17

Native Dynamic SQL vs. the DBMS_SQL Package

BEGIN

- bulk fetch the 'ename’ column into a VARRAY of VARCHARZs.
EXECUTE IMMEDIATE

'BEGIN

SELECT ename BULK COLLECT INTO :tab
FROM'’ || tablel || ;

END;

USING OUT ename_col;

- bulk insert the 'ename’ column into another table.
EXECUTE IMMEDIATE
'BEGIN
FORALL i IN first .. last
INSERT INTO || table2 || ' VALUES (tab());
END;
USING ename_col/first, ename_col.last, ename_col;
END,;
/

Multiple Row Updates and Deletes with a RETURNING Clause

The DBMS_SQIpackage supports statements with a RETURNING: lause that update
or delete multiple rows. Native dynamic SQL only supports a RETURNINGlause if
a single row is returned.

See Also: "DML Returning Example" on page 8-22 for examples
of DBMS_SQIpackage code and native dynamic SQL code that uses
a RETURNING lause.

Support for SQL Statements Larger than 32KB

The DBMS_SQIpackage supports SQL statements larger than 32KB; native dynamic
SQL does not.

Reuse of SQL Statements

The PARSEprocedure in the DBMS_SQIpackage parses a SQL statement once. After
the initial parsing, the statement can be used multiple times with different sets of
bind arguments.

In contrast, native dynamic SQL prepares a SQL statement for execution each time
the statement is used. Statement preparation typically involves parsing,
optimization, and plan generation. Preparing a statement each time it is used incurs
a small performance penalty. However, Oracle’s shared cursor mechanism

8-18 Application Developer's Guide - Fundamentals

Native Dynamic SQL vs. the DBMS_SQL Package

minimizes the cost, and the performance penalty is typically trivial when compared
to the performance benefits of native dynamic SQL.

Examples of DBMS_SQL Package Code and Native Dynamic SQL Code

The following examples illustrate the differences in the code necessary to complete
operations with the DBMS_SQIpackage and native dynamic SQL. Specifically, the
following types of examples are presented:

« Aquery
« A DML operation
« A DML returning operation

In general, the native dynamic SQL code is more readable and compact, which can
improve developer productivity.

Query Example

The following example includes a dynamic query statement with one bind variable
(:jobname) and two select columns (ename and sal):

stmt_str :="SELECT ename, sal FROM emp WHERE job = jobname’;
This example queries for employees with the job description SALESMANN the job

column of the emptable. Table 8-2 shows sample code that accomplishes this query
using the DBMS_SQlpackage and native dynamic SQL.

Dynamic SQL 8-19

Native Dynamic SQL vs. the DBMS_SQL Package

Table 8-2 Querying Using the DBMS_SQL Package and Native Dynamic SQL

DBMS_SQL Query Operation

Native Dynamic SQL Query Operation

DECLARE

stmt_str varchar2(200);

cur_hdlint;

rows_processed int;

name varchar2(10);

salary int;
BEGIN
cur_hdl :=dbms_sql.open_cursor; — open cursor
stmt_str :="SELECT ename, sal FROM emp WHERE
job = jobname’;
dbms_sgl.parse(cur_hdl, stmt_str, doms_
sgl.native);

- supply binds (bind by name)
dbms_sqjl.bind_variable(
cur_hdl, jobname’,'SALESMAN);

- describe defines
dbms_sgl.define_column(cur_hdl, 1, name, 200);
dbms_sqgl.define_column(cur_hdl, 2, salary);

rows_processed :=dbms_sql.execute(cur_hdl); —
execute

LOOP
—fetcharow
IF doms_sqlfetch_rows(cur_hdl) >0 then

—fetch columns from the row
doms_sgl.column_value(cur_hdl, 1, name);
dbms_sgl.column_value(cur_hdl, 2, salary);

— <process data>

ELSE
EXIT;
END IF;
END LOOP;
dbms_sqgl.close_cursor(cur_hdl); - close cursor
END;
/

DECLARE
TYPE EmpCurTyp IS REF CURSOR;
cur EmpCurTyp;
stmt_str VARCHAR2(200);
name VARCHAR2(20);
salary NUMBER;
BEGIN
stmt_str:="SELECT ename, sal FROM emp
WHERE job =1,
OPEN cur FOR stmt_str USING 'SALESMAN;;

LOOP
FETCH cur INTO name, salary;
EXIT WHEN cureNOTFOUND;
— <process data>

END LOOP;

CLOSE cur,

END,;

/

8-20 Application Developer's Guide - Fundamentals

Native Dynamic SQL vs. the DBMS_SQL Package

DML Example

The following example includes a dynamic INSERT statement for a table with three
columns:

stmt_str:="INSERT INTO dept_new VALUES (:deptno, :dname, :loc);;
This example inserts a new row for which the column values are in the PL/SQL
variables deptnumber , deptname , and location . Table 8-3 shows sample code

that accomplishes this DML operation using the DBMS_SQIpackage and native
dynamic SQL.

Table 8-3 DML Operation Using the DBMS_SQL Package and Native Dynamic SQL

DBMS_SQL DML Operation

Native Dynamic SQL DML Operation

DECLARE
stmt_str VARCHAR2(200);
cur_hdNUMBER;
deptnumber NUMBER :=99;
deptname VARCHAR2(20);
location VARCHAR2(10);
rows_processed NUMBER;
BEGIN
stmt_str:="INSERT INTO dept_new VALUES
(:deptno, :dname, :loc)’;
cur_hdl:=DBMS_SQL.OPEN_CURSOR;
DBMS_SQL.PARSE(
cur_hdl, stmt_str, DBMS_SQL.NATIVE);
—supply binds
DBMS_SQL.BIND_VARIABLE
(cur_hdl, :deptno’, deptnumber);
DBMS_SQL.BIND_VARIABLE
(cur_hdl, :dname’, deptname);
DBMS_SQL.BIND_VARIABLE
(cur_hdl, loc, location);

rows_processed = dbms_sql.execute(cur_hdl);

—execute

DBMS_SQL.CLOSE_CURSOR(cur_hdl); — close

END;
/

DECLARE
stmt_str VARCHAR2(200);
deptumber NUMBER :=99;
deptname VARCHAR2(20);
location VARCHAR2(10);
BEGIN
stmt_str:="INSERT INTO dept_new VALUES
(:deptno, :dname, loc)’;
EXECUTE IMMEDIATE stmt_str
USING deptnumber, deptname, location;
END;
/

Dynamic SQL 8-21

Native Dynamic SQL vs. the DBMS_SQL Package

DML Returning Example

The following example includes a dynamic UPDATEstatement that updates the
location of a department when given the department number (deptnumber) and a
new location (location), and then returns the name of the department:

stmt_str :="UPDATE dept_new
SET loc = :newmoc
WHERE deptno = :deptno
RETURNING dname INTO :dname’

This example inserts a new row for which the column values are in the PL/SQL
variables deptnumber , deptname , and location . Table 8-4 shows sample code
that accomplishes this DML returning operation using the DBMS_SQIpackage and
native dynamic SQL.

8-22 Application Developer's Guide - Fundamentals

Native Dynamic SQL vs. the DBMS_SQL Package

Table 8-4 DML Returning Operation Using the DBMS_SQL Package and Native Dynamic SQL

DBMS_SQL DML Returning Operation Native Dynamic SQL DML Returning Operation

DECLARE
deptname_array doms_sql.Varchar2_Table;
cur_hdlINT;
stmt_str VARCHAR2(200);
location VARCHAR2(20);
deptnumber NUMBER := 10;
rows_processed NUMBER;
BEGIN
stmt_str:="UPDATE dept_new
SET loc =:newioc
WHERE deptno = :deptno
RETURNING dname INTO :dname’;

cur_hdl :=dbms_sqgl.open_cursor;
doms_sqgl.parse
(cur_hdl, stmt_str, doms_sqjl.native);
- supply binds
dbms_sglbind_variable
(cur_hdl, :newloc’, location);
dbms_sq.bind_variable
(cur_hdl, :deptno’, deptnumber);
dbms_sglbind_array
(cur_hdl, :dname’, deptname_amay);
— execute cursor
rows_processed :=dbms_sgl.execute(cur_hdl);
—get RETURNING columninto OUT bind array
dbms_sgl.variable_value
(cur_hdl, :dname’, deptname_array);
dbms_sgl.close_cursor(cur_hdi);
END;
/

DECLARE

deptname_array doms_sqgl.Varchar2_Table;
stmt_str VARCHAR2(200);

location VARCHAR2(20);

deptnumber NUMBER = 10;

deptname VARCHAR2(20);

BEGIN
stmt_str:="UPDATE dept_new
SET loc =:newloc

WHERE deptno = :deptno
RETURNING dname INTO :dname”;
EXECUTE IMMEDIATE stmt_str
USING location, deptnumber, OUT deptname;
END,;
/

Dynamic SQL 8-23

Application Development Languages Other Than PL/SQL

Application Development Languages Other Than PL/SQL

So far, the discussion in this chapter has been about PL/SQL support for
dynamic SQL. However, you can use other application development languages to
implement programs that use dynamic SQL. These application development
languages include C/C++, COBOL, and Java.

If you use C/C++, you can develop applications that use dynamic SQL with the
Oracle Call Interface (OCI), or you can use the Pro*C/C++ precompiler to add
dynamic SQL extensions to your C code. Similarly, if you use COBOL, you can use
the Pro*COBOL precompiler to add dynamic SQL extensions to your COBOL code.
If you use Java, you can develop applications that use dynamic SQL with JDBC.

In the past, the only way to use dynamic SQL in PL/SQL applications was by using
the DBMS_SQIpackage. There are a number of limitations to using this package,
including performance concerns. Consequently, application developers may have
used one of the alternatives to PL/SQL discussed above to implement

dynamic SQL. However, with the introduction of native dynamic SQL in PL/SQL,
many of the drawbacks to using PL/SQL for dynamic SQL are now eliminated.

If you have an application that uses OCI, Pro*C/C++, or Pro*COBOL for

dynamic SQL execution, the network roundtrips required to perform dynamic SQL
operations may hurt performance. Because these applications typically reside on
clients, more network calls are required to complete dynamic SQL operations. If you
have this type of application, consider moving the dynamic SQL functionality to
stored procedures and stored functions in PL/SQL that use native dynamic SQL.
Doing so might improve the performance of your application because the stored
procedures can reside on the server, thereby eliminating the network overhead. You
can then call the PL/SQL stored procedures and stored functions from the
application.

See Also: For information about calling Oracle stored procedures
and stored functions from non-PL/SQL applications, refer to:

« Oracle Call Interface Programmer’s Guide

« Pro*C/C++ Precompiler Programmer’s Guide

« Pro*COBOL Precompiler Programmer’s Guide

« Oracle8i Java Stored Procedures Developer’s Guide

8-24 Application Developer's Guide - Fundamentals

9

Using Procedures and Packages

This chapter describes some of the procedural capabilities of Oracle for application
development, including:

PL/SQL Program Units
Wrapping PL/SQL Code
Remote Dependencies
Cursor Variables
Compile-Time Errors
Run-Time Error Handling
Debugging Stored Procedures
Calling Stored Procedures
Calling Remote Procedures

Calling Stored Functions from SQL Expressions

Using Procedures and Packages 9-1

PL/SQL Program Units

PL/SQL Program Units

PL/SQL is a modern, block-structured programming language. It provides several
features that make developing powerful database applications very convenient. For
example, PL/SQL provides procedural constructs, such as loops and conditional
statements, that are not available in standard SQL.

You can directly enter SQL data manipulation language (DML) statements inside
PL/SQL blocks, and you can use procedures, supplied by Oracle, to perform data
definition language (DDL) statements.

PL/SQL code runs on the server, so using PL/SQL lets you centralize significant
parts of your database applications for increased maintainability and security. It
also enables you to achieve a significant reduction of network overhead in
client/server applications.

Note: Some Oracle tools, such as Oracle Forms, contain a PL/SQL
engine that allows you to run PL/SQL locally.

You can even use PL/SQL for some database applications in place of 3GL programs
that use embedded SQL or the Oracle Call Interface (OCI).

PL/SQL program units include:
= Anonymous Blocks
« Stored Program Units (Procedures, Functions, and Packages)

« Triggers

See Also: For complete information about the PL/SQL language,
see the PL/SQL User’s Guide and Reference.

Anonymous Blocks

An anonymous block is a PL/SQL program unit that has no name and it does not
require the explicit presence of the BEGIN and ENDkeywords to enclose the
executable statements. An anonymous block consists of an optional declarative part,
an executable part, and one or more optional exception handlers.

The declarative part declares PL/SQL variables, exceptions, and cursors. The
executable part contains PL/SQL code and SQL statements, and can contain nested
blocks. Exception handlers contain code that is called when the exception is raised,

9-2 Application Developer's Guide - Fundamentals

PL/SQL Program Units

either as a predefined PL/SQL exception (such as NO_DATA_FOUN&r ZERO _
DIVIDE) or as an exception that you define.

The following short example of a PL/SQL anonymous block prints the names of all
employees in department 20 in the Emp_tab table, using the DBMS_OUTPUT
package:

DECLARE
Emp_name VARCHAR2(10);
Cursor c1IS SELECT Ename FROM Emp_tab
WHERE Deptno = 20;
BEGIN
OPENCcI;
LOOP
FETCH 1 INTO Emp_name;
EXIT WHEN c1%NOTFOUND,;
DBMS_OUTPUT.PUT_LINE(Emp_name);
END LOOP;
END;

Note: If you test this block using SQL*Plus, then enter the
statement SET SERVEROUTPUT (¢ that output using the DBMS _
OUTPUTprocedures (for example, PUT_LINE) is activated. Also,
end the example with a slash (/) to activate it.

See Also: For complete information about the DBMS_OUTPUT
package, see Oracle8i Supplied PL/SQL Packages Reference.

Exceptions let you handle Oracle error conditions within PL/SQL program logic.
This allows your application to prevent the server from issuing an error that could
cause the client application to abend. The following anonymous block handles the
predefined Oracle exception NO_DATA_FOUN@vhich would result in an
ORAQ01403 error if not handled):

Using Procedures and Packages 9-3

PL/SQL Program Units

DECLARE
Emp_number INTEGER :=9999;
Emp_name VARCHAR2(10);
BEGIN
SELECT Ename INTO Emp_name FROM Emp_tab
WHERE Empno =Emp_number; - no such number
DBMS_OUTPUT.PUT_LINE(Employee nameis’ || Emp_name);
EXCEPTION
WHEN NO_DATA_FOUND THEN
DBMS_OUTPUT.PUT_LINE(No such employee:’ || Emp_number);
END;

You can also define your own exceptions, declare them in the declaration part of a
block, and define them in the exception part of the block. An example follows:

DECLARE
Emp_name VARCHAR2(10);
Emp _number INTEGER;
Empno_out_of range EXCEPTION;
BEGIN
Emp_number :=10001;
IF Emp_number >9999 OR Emp_number < 1000 THEN
RAISE Empno_out_of range;
ELSE
SELECT Ename INTO Emp_name FROM Emp_tab
WHERE Empno = Emp_number;
DBMS_OUTPUT.PUT_LINECEmployee nameis’ || Emp_name);
ENDIF;
EXCEPTION
WHEN Empno_out_of range THEN
DBMS_OUTPUT.PUT_LINE(Employee number’ || Emp_number ||
'isoutofrange.’;
END;

See Also: "Run-Time Error Handling" on page 9-43 and see the
PL/SQL User’s Guide and Reference.

Anonymous blocks are usually used interactively from a tool, such as SQL*Plus, or
in a precompiler, OCI, or SQL*Module application. They are usually used to call
stored procedures or to open cursor variables.

See Also: "Cursor Variables" on page 9-38.

9-4 Application Developer’'s Guide - Fundamentals

PL/SQL Program Units

Stored Program Units (Procedures, Functions, and Packages)
A stored procedure, function, or package is a PL/SQL program unit that:

« Hasaname.
« Can take parameters, and can return values.
« Isstored in the data dictionary.

« Can be called by many users.

Note: The term stored procedure is sometimes used generically for
both stored procedures and stored functions. The only difference
between procedures and functions is that functions always return a
single value to the caller, while procedures do not return a value to
the caller.

Naming Procedures and Functions

Because a procedure or function is stored in the database, it must be named. This
distinguishes it from other stored procedures and makes it possible for applications
to call it. Each publicly-visible procedure or function in a schema must have a
unique name, and the name must be a legal PL/SQL identifier.

Note: If you plan to call a stored procedure using a stub generated
by SQL*Module, then the stored procedure name must also be a
legal identifier in the calling host 3GL language, such as Ada or C.

Parameters for Procedures and Functions

Stored procedures and functions can take parameters. The following example
shows a stored procedure that is similar to the anonymous block in "Anonymous
Blocks" on page 9-2.

Caution: To execute the following, use CREATE OR REPLACE
PROCEDURE

Using Procedures and Packages 9-5

PL/SQL Program Units

PROCEDURE Get_emp_names (Dept_num IN NUMBER) IS
Emp_name VARCHAR2(10);
CURSOR cl1(Depno NUMBER)IS
SELECT Ename FROM Emp_tab
WHERE deptno = Depno;
BEGIN
OPEN c1(Dept_num);
LOOP
FETCH c1INTO Emp_name;
EXIT WHEN C1%NOTFOUND;
DBMS_OUTPUT.PUT_LINE(Emp_name);
END LOOP;
CLOSEccl;
END;

In this stored procedure example, the department number is an input parameter
which is used when the parameterized cursor c1 is opened.

The formal parameters of a procedure have three major parts:

Name This must be a legal PL/SQL identifier.

Mode This indicates whether the parameter is an input-only parameter
(IN), an output-only parameter (OUT), or is both an input and an
output parameter (IN OUT). If the mode is not specified, then IN
is assumed.

Datatype This is a standard PL/SQL datatype.

Parameter Modes Parameter modes define the behavior of formal parameters. The
three parameter modes, IN (the default), OUTand IN OUT, can be used with any
subprogram. However, avoid using the OUTand IN OUT modes with functions. The
purpose of a function is to take no arguments and return a single value. It is poor
programming practice to have a function return multiple values. Also, functions
should be free from side effects, which change the values of variables not local to
the subprogram.

Table 9-1 summarizes the information about parameter modes.

See Also: Parameter modes are explained in detail in the PL/SQL
User’s Guide and Reference.

9-6 Application Developer’'s Guide - Fundamentals

PL/SQL Program Units

Table 9-1 Parameter Modes

IN ouT IN OUT

The default. Must be specified. Must be specified.

Passes values to a Returns values to the caller. Passes initial values to a
subprogram. subprogram; returns updated

values to the caller.

Formal parameter acts likea Formal parameter acts like an Formal parameter acts like an
constant. uninitialized variable. initialized variable.

Formal parameter cannot be Formal parameter cannot be = Formal parameter should be
assigned a value. used in an expression; must assigned a value.
be assigned a value.

Actual parameter canbea Actual parameter mustbea Actual parameter must be a
constant, initialized variable. variable.

variable, literal, or

expression.

Parameter Datatypes The datatype of a formal parameter consists of one of the
following:

« Anunconstrained type name, such as NUMBERr VARCHARZ2
« Atype that is constrained using the %TYPEor %ROWTY R#tributes.

Note: Numerically constrained types such as NUMBER) or
VARCHARO) are not allowed in a parameter list.

%TYPE and %ROWTYPE Attributes

Use the type attributes %TYPEand %ROWTYR& constrain the parameter. For
example, the Get_emp_names procedure specification in "Parameters for
Procedures and Functions" on page 9-5 could be written as the following:

PROCEDURE Get_emp_names(Dept_num IN Emp_tab.Deptno%TYPE)

This has the Dept_num parameter take the same datatype as the Deptno columnin
the Emp_tab table. The column and table must be available when a declaration
using % TYPHor %ROWTYPRIS elaborated.

Using %TYPHSs recommended, because if the type of the column in the table
changes, then it is not necessary to change the application code.

Using Procedures and Packages 9-7

PL/SQL Program Units

If the Get_emp_names procedure is part of a package, then you can use
previously-declared public (package) variables to constrain a parameter datatype.
For example:

Dept_number number(2);
PROCEDURE Get_emp_names(Dept_num IN Dept_number%6TYPE);

Use the %ROWTYPdtribute to create a record that contains all the columns of the
specified table. The following example defines the Get_emp_rec procedure, which
returns all the columns of the Emp_tab table in a PL/SQL record for the given
empno:

Caution: To execute the following, use CREATE OR REPLACE
PROCEDURE

PROCEDURE Get_emp_rec (Emp_number IN Emp_tab.Empno%TYPE,
Emp_ret OUT Emp_tab%ROWTYPE) IS
BEGIN
SELECT Empno, Ename, Job, Mgr, Hiredate, Sal, Comm, Deptno

INTO Emp_ret
FROM Emp_tab
WHERE Empno = Emp_number;

END,;

You could call this procedure from a PL/SQL block as follows:

DECLARE
Emp_row Emp_tab%ROWTYPE; - declare arecord matching a
- row in the Emp_tab table

BEGIN
Get_emp_rec(7499, Emp_row); —callfor Emp_tab# 7499
DBMS_OUTPUT.PUT(Emp_row.Ename ||’ || Emp_row.Empno);
DBMS_OUTPUT.PUT(’ [| Emp_row.Job ||’ || Emp_row.Mgr);
DBMS_OUTPUT.PUT(’ [| Emp_row.Hiredate |’ || Emp_row.Sal);
DBMS_OUTPUT.PUT(’ [| Emp_row.Comm || *’|| Emp_row.Deptno);
DBMS_OUTPUT.NEW_LINE;

END;

Stored functions can also return values that are declared using %ROWTYPEor
example:

FUNCTION Get_emp_rec (Dept_num IN Emp_tab.Deptno%TYPE)
RETURN Emp_tab%ROWTYPEIS ...

9-8 Application Developer’'s Guide - Fundamentals

PL/SQL Program Units

Tables and Records You can pass PL/SQL tables as parameters to stored procedures
and functions. You can also pass tables of records as parameters.

Note: When passing a user defined type, such as a PL/SQL table
or record to a remote procedure, to make PL/SQL use the same
definition so that the type checker can verify the source, you must
create a redundant loop back DBLINK so that when the PL/SQL
compiles, both sources ’pull’ from the same location.

Default Parameter Values Parameters can take default values. Use the DEFAULT
keyword or the assignment operator to give a parameter a default value. For
example, the specification for the Get_emp_names procedure could be written as
the following:

PROCEDURE Get_emp_names (Dept_num IN NUMBER DEFAULT 20) IS ...

or
PROCEDURE Get_emp_names (Dept_num IN NUMBER :=20) IS ...
When a parameter takes a default value, it can be omitted from the actual

parameter list when you call the procedure. When you do specify the parameter
value on the call, it overrides the default value.

Note: Unlike in an anonymous PL/SQL block, you do not use the
keyword DECLARBefore the declarations of variables, cursors,
and exceptions in a stored procedure. In fact, it is an error to use it.

Creating Stored Procedures and Functions
Use a text editor to write the procedure or function. At the beginning of the
procedure, place the following statement:

CREATE PROCEDURE Procedure_nameAS ...

For example, to use the example in "% TYPE and %ROWTYPE Attributes" on
page 9-7, create a text (source) file called get_emp .sgl containing the following
code:

CREATE PROCEDURE Get_emp_rec (Emp_number IN Emp_tab.Empno%TYPE,
Emp_ret OUT Emp_tab%ROWTYPE) AS
BEGIN

Using Procedures and Packages 9-9

PL/SQL Program Units

SELECT Empno, Ename, Job, Mgr, Hiredate, Sal, Comm, Deptno
INTO Emp_ret
FROM Emp_tab
WHERE Empno = Emp_number;
END;
/

Then, using an interactive tool such as SQL*Plus, load the text file containing the
procedure by entering the following statement:

SQLPLUS> @get_emp
This loads the procedure into the current schema from the get_emp .sqgl file (.sql

is the default file extension). Note the slash (/) at the end of the code. This is not
part of the code; it just activates the loading of the procedure.

Use the CREATHOR REPLACH-UNCTION.. statement to store functions.

Caution: When developing a new procedure, it is usually much
more convenient to use the CREATE OR REPLACEPROCEDURE
statement. This replaces any previous version of that procedure
in the same schema with the newer version, but note that this is
done without warning.

You can use either the keyword IS or ASafter the procedure parameter list.

See Also: Oracle8i Reference for the complete syntax of the
CREATE PROCEDUREd CREATE FUNCTIOKtatements.

Privileges to Create Procedures and Functions To create a stand-alone procedure or
function, or package specification or body, you must meet the following
prerequisites:

« You must have the CREATE PROCEDURYstem privilege to create a procedure
or package in your schema, or the CREATE ANY PROCEDU®Btem privilege to
create a procedure or package in another user’s schema.

9-10 Application Developer's Guide - Fundamentals

PL/SQL Program Units

Note: To create without errors (to compile the procedure or
package successfully) requires the following additional privileges:

« The owner of the procedure or package must be explicitly
granted the necessary object privileges for all objects referenced
within the body of the code.

« The owner cannot obtain required privileges through roles.

If the privileges of a procedure’s or a package’s owner change, then the procedure
must be reauthenticated before it is run. If a necessary privilege to a referenced
object is revoked from the owner of the procedure or package, then the procedure
cannot be run.

The EXECUTHBrivilege on a procedure gives a user the right to run a procedure
owned by another user. Privileged users run the procedure under the security
domain of the procedure’s owner. Therefore, users never need to be granted the
privileges to the objects referenced by a procedure. This allows for more disciplined
and efficient security strategies with database applications and their users.
Furthermore, all procedures and packages are stored in the data dictionary (in the
SYSTEMablespace). No quota controls the amount of space available to a user who
creates procedures and packages.

Note: Package creation requires a sort. So the user creating the
package should be able to create a sort segment in the temporary
tablespace with which the user is associated.

See Also: "Privileges Required to Execute a Procedure" on
page 9-52.

Altering Stored Procedures and Functions

To alter a stored procedure or function, you must first drop it using the DROP
PROCEDUR& DROP FUNCTIOBktatement, then recreate it using the CREATE
PROCEDUR& CREATE FUNCTIONtatement. Alternatively, use the CREATE OR
REPLACE PROCEDURECREATE OR REPLACE FUNCTIGtstement, which first
drops the procedure or function if it exists, then recreates it as specified.

Using Procedures and Packages 9-11

PL/SQL Program Units

Caution: The procedure or function is dropped without any
warning.

Dropping Procedures and Functions

A stand-alone procedure, a stand-alone function, a package body, or an entire
package can be dropped using the SQL statements DROP PROCEDUREROP
FUNCTION DROP PACKAGE BQRind DROP PACKAGEespectively. A DROP
PACKAGEtatement drops both a package’s specification and body.

The following statement drops the Old_sal_raise procedure in your schema:
DROP PROCEDURE Old_sal raise;

Privileges to Drop Procedures and Functions To drop a procedure, function, or package,
the procedure or package must be in your schema, or you must have the DROP ANY
PROCEDURgrivilege. An individual procedure within a package cannot be
dropped; the containing package specification and body must be re-created without
the procedures to be dropped.

External Procedures

A PL/SQL procedure executing on an Oracle Server can call an external procedure
written in a 3GL. The 3GL procedure runs in a separate address space from that of
the Oracle Server.

See Also: For information about external procedures, see the
Chapter 10, "External Routines".

PL/SQL Packages

A package is an encapsulated collection of related program objects (e.g., procedures,
functions, variables, constants, cursors, and exceptions) stored together in the
database.

Using packages is an alternative to creating procedures and functions as standalone
schema objects. Packages have many advantages over stand-alone procedures and
functions. For example, they:

« Letyou organize your application development more efficiently.
« Letyou grant privileges more efficiently.

« Let you modify package objects without recompiling dependent schema objects.

9-12 Application Developer's Guide - Fundamentals

PL/SQL Program Units

« Enable Oracle to read multiple package objects into memory at once.

« Can contain global variables and cursors that are available to all procedures and
functions in the package.

« Let you overload procedures or functions. Overloading a procedure means
creating multiple procedures with the same name in the same package, each
taking arguments of different number or datatype.

See Also: The PL/SQL User’s Guide and Reference has more
information about subprogram name overloading.

The specification part of a package declares the public types, variables, constants, and
subprograms that are visible outside the immediate scope of the package. The body
of a package defines the objects declared in the specification, as well as private
objects that are not visible to applications outside the package.

Example The following example shows a package specification for a package named

Employee_management . The package contains one stored function and two stored
procedures. The body for this package defines the function and the procedures:

Using Procedures and Packages 9-13

PL/SQL Program Units

CREATE PACKAGE BODY Employee_management AS
FUNCTION Hire_emp (Name VARCHARZ, Job VARCHAR2,
Mgr NUMBER, Hiredate DATE, Sal NUMBER, Comm NUMBER,
Deptno NUMBER) RETURN NUMBER IS
New_empno NUMBER(10);

— This function accepts all arguments for the fields in
—the employee table except for the employee number.
— Avalue for this field is supplied by a sequence.

— The function retums the sequence number generated
— by the call to this function.

BEGIN
SELECT Emp_sequence.NEXTVAL INTO New_empno FROM dual;
INSERT INTO Emp_tab VALUES (New_empno, Name, Job, Mg,
Hiredate, Sal, Comm, Deptno);
RETURN (New_empno);
END Hire_emp;

PROCEDURE fire_emp(emp_id INNUMBER) AS

— This procedure deletes the employee with an employee
- number that comesponds to the argument Emp_id. If
—no employee is found, then an exception is raised.

BEGIN
DELETE FROM Emp_tab WHERE Empno =Emp _id;
IF SQLY%NOTFOUND THEN
Raise_application_emor(-20011, 'Invalid Employee
Number:’ || TO_CHAR(EmMp_id));
ENDIF;
END fire_emp;

PROCEDURE Sal_raise (Emp_id INNUMBER, Sal_incr INNUMBER) AS

— This procedure accepts two arguments. Emp_idisa
—number that corresponds to an employee number.
—SAL_INCR is the amount by which to increase the

— employee’s salary. If employee exists, then update

— salary with increase.

BEGIN
UPDATE Emp_tab
SET Sal=Sal+ Sal_incr
WHERE Empno=Emp id;

9-14 Application Developer's Guide - Fundamentals

PL/SQL Program Units

IF SQLY%NOTFOUND THEN
Raise_application_error(-20011, 'Invalid Employee
Number:’ || TO_CHAR(EmMp_id));
ENDIF;
END Sal _raise;
END Employee_management;

Note: If you want to try this example, then first create the
sequence number Emp_sequence . Do this with the following
SQL*Plus statement:

SQL>CREATE SEQUENCE Emp_sequence
> START WITH 8000 INCREMENT BY 10;

PL/SQL Object Size Limitation

The size limitation for PL/SQL stored database objects such as procedures,
functions, triggers, and packages is the size of the DIANA in the shared pool in
bytes. The UNIX limit on the size of the flattened DIANA/pcode size is 64K but the
limit may be 32K on desktop platforms such as DOS and Windowvs.

The most closely related number that a user can access is the PARSED_SIZE in the
data dictionary view USER_OBJECT_SIZE. That gives the size of the DIANA in
bytes as stored in the SYS.IDL_xxx$ tables. This is not the size in the shared pool.
The size of the DIANA part of PL/SQL code (used during compilation) is
significantly larger in the shared pool than it is in the system table.

Size Limitation by Version ~ The size limitation of a PL/SQL package is approximately
128K parsed size in release 7.3. For releases earlier than 7.3 the limitation is 64K.

Creating Packages

Each part of a package is created with a different statement. Create the package
specification using the CREATE PACKAGdatement. The CREATE PACKAGE
statement declares public package objects.

To create a package body, use the CREATE PACKAGE BOBtdtement. The CREATE
PACKAGE BODstatement defines the procedural code of the public procedures and
functions declared in the package specification.

You can also define private, or local, package procedures, functions, and variables
in a package body. These objects can only be accessed by other procedures and
functions in the body of the same package. They are not visible to external users,
regardless of the privileges they hold.

Using Procedures and Packages 9-15

PL/SQL Program Units

It is often more convenient to add the OR REPLACElause in the CREATE PACKAGE
or CREATE PACKAGE BOBXdtements when you are first developing your
application. The effect of this option is to drop the package or the package body
without warning. The CREATEstatements would then be the following:

CREATE OR REPLACE PACKAGE Package_nameAS ...

and
CREATE OR REPLACE PACKAGE BODY Package nameAS...

Creating Packaged Objects The body of a package can contain include:

« Procedures and functions declared in the package specification.

« Definitions of cursors declared in the package specification.

« Local procedures and functions, not declared in the package specification.
« Local variables.

Procedures, functions, cursors, and variables that are declared in the package
specification are global. They can be called, or used, by external users that have
EXECUTBRpermission for the package or that have EXECUTE ANY PROCEDURE
privileges.

When you create the package body, make sure that each procedure that you define
in the body has the same parameters, by name, datatype, and mode, as the declaration
in the package specification. For functions in the package body, the parameters and
the return type must agree in name and type.

Privileges to Create or Drop Packages = The privileges required to create or drop a
package specification or package body are the same as those required to create or
drop a stand-alone procedure or function.

See Also: "Privileges to Create Procedures and Functions" on
page 9-10 and "Privileges to Drop Procedures and Functions" on
page 9-12.

Naming Packages and Package Objects

The names of a package and all public objects in the package must be unique within
a given schema. The package specification and its body must have the same name.
All package constructs must have unique names within the scope of the package,
unless overloading of procedure names is desired.

9-16 Application Developer's Guide - Fundamentals

PL/SQL Program Units

Package Invalidations and Session State

Each session that references a package object has its own instance of the
corresponding package, including persistent state for any public and private
variables, cursors, and constants. If any of the session’s instantiated packages
(specification or body) are subsequently invalidated and recompiled, then all other
dependent package instantiations (including state) for the session are lost.

For example, assume that session S instantiates packages P1 and P2, and that a
procedure in package P1 calls a procedure in package P2. If P1 is invalidated and
recompiled (for example, as the result of a DDL operation), then the session S
instantiations of both P1 and P2 are lost. In such situations, a session receives the
following error the first time it attempts to use any object of an invalidated package
instantiation:

ORA-04068: existing state of packages has been discarded

The second time a session makes such a package call, the package is reinstantiated
for the session without error.

Note: Oracle has been optimized to not return this message to the
session calling the package that it invalidated. Thus, in the example
above, session S receives this message the first time it called
package P2, but it does not receive it when calling P1.

In most production environments, DDL operations that can cause invalidations are
usually performed during inactive working hours; therefore, this situation might
not be a problem for end-user applications. However, if package specification or
body invalidations are common in your system during working hours, then you
might want to code your applications to detect for this error when package calls are
made.

Oracle Supplied Packages

There are many built-in packages provided with the Oracle Server, either to extend
the functionality of the database or to give PL/SQL access to SQL features. You may
take advantage of the functionality provided by these packages when creating your
application, or you may simply want to use these packages for ideas in creating
your own stored procedures.

This section lists each of the supplied packages and indicates where they are
described in more detail. These packages run as the calling user, rather than the

Using Procedures and Packages 9-17

PL/SQL Program Units

package owner. Unless otherwise noted, the packages are callable through public
synonyms of the same name.

Table 9-2 List of Oracle Supplied Packages

Package Name

Description

Documentation

Calendar
(see Note Nr. 2 below)

DBMS_ALERT

DBMS_APPLICATION_INFO

DBMS_AQ

DBMS_AQADM

Provides calendar maintenance functions.

Provides support for the asynchronous
notification of database events.

Lets you register an application name with the
database for auditing or performance tracking
purposes.

Lets you add a message (of a predefined object
type) onto a queue or to dequeue a message.

Lets you perform administrative functions on a
queue or queue table for messages of a
predefined object type.

DBMS_BACKUP_RESTORE (WindowsNormalizes filenames for Windows NT

NT only)
DBMS_DDL

DBMS_DEBUG

DBMS_DEFER

DBMS_DEFER_QUERY

DMBS_DEFER_SYS

DBMS_DESCRIBE

environments.

Provides access to some SQL DDL statements
from stored procedures, and provides special

administration operations not available as DDLs.

A PL/SQL API to the PL/SQL debugger layer,
Probe, in the Oracle server.

Provides the user interface to a replicated
transactional deferred remote procedure call
facility. Requires the Distributed Option.

Permits querying the deferred remote procedure
calls (RPC) queue data that is not exposed
through views. Requires the Distributed Option.

Provides the system administrator interface to a
replicated transactional deferred remote
procedure call facility. Requires the Distributed
Option.

Describes the arguments of a stored procedure

with full name translation and security checking.

9-18 Application Developer's Guide - Fundamentals

Oracle8i Time Series User’s
Guide

Oracle8i Supplied PL/SQL
Packages Reference

Oracle8i Supplied PL/SQL
Packages Reference

Oracle8i Supplied PL/SQL
Packages Reference

Oracle8i Supplied PL/SQL
Packages Reference

Oracle8i Migration

Oracle8i Supplied PL/SQL
Packages Reference

Oracle8i Supplied PL/SQL
Packages Reference

Oracle8i Supplied PL/SQL
Packages Reference

Oracle8i Supplied PL/SQL
Packages Reference

Oracle8i Supplied PL/SQL
Packages Reference

Oracle8i Supplied PL/SQL
Packages Reference

PL/SQL Program Units

Table 9-2 List of Oracle Supplied Packages

Package Name

Description Documentation

DBMS_DISTRIBUTED_TRUST _ADMINMaintains the Trusted Database List, which is Oracle8i Supplied PL/SQL

DBMS_HS

DBMS_HS_PASSTHROUGH

DBMS_IOT

DBMS_JOB

DBMS_LOB

DBMS_LOCK

DBMS_LOGMNR

DBMS_MVIEW

DBMS_OBFUSCATION_TOOLKIT

DBMS_OFFLINE_OG

DBMS_OFFLINE_SNAPSHOT

DBMS_OLAP

DBMS_ORACLE TRACE_AGENT

used to determine if a privileged database link Packages Reference
from a particular server can be accepted.

Lets you create and modify objects in the Oracle8i Supplied PL/SQL
Heterogeneous Services dictionary. Packages Reference

Lets you use Heterogeneous Services to send Oracle8i Supplied PL/SQL
pass-through SQL statements to non-Oracle Packages Reference
systems.

Creates a table into which references to the Oracle8i Supplied PL/SQL

chained rows for an Index Organized Table can Packages Reference
be placed using the ANALYZEcommand.

Lets you schedule administrative procedures that Oracle8i Supplied PL/SQL
you want performed at periodic intervals; it is Packages Reference
also the interface for the job queue.

Provides general purpose routines for operations Oracle8i Supplied PL/SQL
on Oracle Large Object (LOBs) datatypes - BLOB Packages Reference
CLOB(read-write), and BFILE s (read-only).

Lets you request, convert and release locks Oracle8i Supplied PL/SQL
through Oracle Lock Management services. Packages Reference
Provides functions to initialize and run the log Oracle8i Supplied PL/SQL
reader. Packages Reference
Synonym for DBMS_SNAPSHOT. Lets you Oracle8i Supplied PL/SQL
refresh snapshots that are not part of the same Packages Reference

refresh group and purge logs. Requires the
Distributed Option.

Provides Data Encryption Standard procedures. Oracle8i Supplied PL/SQL
Packages Reference

Provides public APIs for offline instantiation of ~ Oracle8i Supplied PL/SQL

master groups. Packages Reference
Provides public APIs for offline instantiation of ~ Oracle8i Supplied PL/SQL
snapshots. Packages Reference
Provides procedures for summaries, dimensions, Oracle8i Supplied PL/SQL
and query rewrites. Packages Reference
Provides client callable interfaces to the Oracle Oracle8i Supplied PL/SQL
TRACE instrumentation within the Oracle7 Packages Reference
Server.

Using Procedures and Packages 9-19

PL/SQL Program Units

Table 9-2 List of Oracle Supplied Packages

Package Name

Description

Documentation

DBMS_ORACLE TRACE USER

DBMS_OUTPUT

DBMS_PCLXUTIL

DBMS_PIPE

DBMS_PROFILER

DBMS_RANDOM

DBMS_RECTIFIER_DIFF

DBMS_REFRESH

DBMS_REPAIR

DBMS_REPCAT

DBMS_REPCAT_ADMIN

DBMS_REPCAT_INSTATIATE

DBMS REPCAT RGT

DBMS_REPUTIL

Provides public access to the Oracle release 7
Server Oracle TRACE instrumentation for the
calling user.

Accumulates information in a buffer so that it can
be retrieved out later.

Provides intra-partition parallelism for creating
partition-wise local indexes.

Provides a DBMS pipe service which enables
messages to be sent between sessions.

Provides a Probe Profiler API to profile existing
PL/SQL applications and identify performance
bottlenecks.

Provides a built-in random number generator.

Provides APIs used to detect and resolve data
inconsistencies between two replicated sites.

Lets you create groups of snapshots that can be
refreshed together to a transactionally consistent
point in time. Requires the Distributed Option.

Provides data corruption repair procedures.

Provides routines to administer and update the
replication catalog and environment. Requires
the Replication Option.

Lets you create users with the privileges needed
by the symmetric replication facility. Requires the
Replication Option.

Instantiates deployment templates. Requires the
Replication Option.

Controls the maintenance and definition of
refresh group templates. Requires the Replication
Option.

Provides routines to generate shadow tables,
triggers, and packages for table replication.

9-20 Application Developer's Guide - Fundamentals

Oracle8i Supplied PL/SQL
Packages Reference

Oracle8i Supplied PL/SQL
Packages Reference

Oracle8i Supplied PL/SQL
Packages Reference

Oracle8i Supplied PL/SQL
Packages Reference

Oracle8i Supplied PL/SQL
Packages Reference

Oracle8i Supplied PL/SQL
Packages Reference

Oracle8i Supplied PL/SQL
Packages Reference

Oracle8i Supplied PL/SQL
Packages Reference

Oracle8i Supplied PL/SQL
Packages Reference

Oracle8i Supplied PL/SQL
Packages Reference

Oracle8i Supplied PL/SQL
Packages Reference

Oracle8i Supplied PL/SQL
Packages Reference

Oracle8i Supplied PL/SQL
Packages Reference

Oracle8i Supplied PL/SQL
Packages Reference

PL/SQL Program Units

Table 9-2 List of Oracle Supplied Packages

Package Name

Description

Documentation

DBMS_RESOURCE_MANAGER

Maintains plans, consumer groups, and plan
directives; it also provides semantics so that you
may group together changes to the plan schema.

DBMS_RESOURCE_MANAGER_PRIMSlaintains privileges associated with resource

DBMS RLS

DBMS_ROWID

DBMS_SESSION

DBMS_SHARED POOL

DBMS_SNAPSHOT
(synonym DBMS_MVIEW

DBMS_SPACE

DBMS_SPACE_ADMIN

DBMS_SQL
DBMS_STANDARD
(See Note Nr. 1 below)
DBMS_STATS

DBMS_TRACE

DBMS_TRANSACTION

consumer groups.

Provides row level security administrative
interface.

Provides procedures to create ROWIDsand to
interpret their contents.

Provides access to SQL ALTER SESSION
statements, and other session information, from
stored procedures.

Lets you keep objects in shared memory, so that
they will not be aged out with the normal LRU
mechanism.

Lets you refresh snapshots that are not part of the
same refresh group and purge logs. Requires the
Distributed Option.

Provides segment space information not
available through standard SQL.

Provides tablespace and segment space
administration not available through the
standard SQL.

Lets you use dynamic SQL to access the database.

Provides language facilities that help your
application interact with Oracle.

Provides a mechanism for users to view and
modify optimizer statistics gathered for database
objects.

Provides routines to start and stop PL/SQL
tracing.

Provides access to SQL transaction statements
from stored procedures and monitors transaction
activities.

Using Procedures and Packages 9-21

Oracle8i Supplied PL/SQL
Packages Reference

Oracle8i Supplied PL/SQL
Packages Reference

Oracle8i Supplied PL/SQL
Packages Reference

Oracle8i Supplied PL/SQL
Packages Reference

Oracle8i Supplied PL/SQL
Packages Reference

Oracle8i Supplied PL/SQL
Packages Reference

Oracle8i Supplied PL/SQL
Packages Reference

Oracle8i Supplied PL/SQL
Packages Reference

Oracle8i Supplied PL/SQL
Packages Reference

Oracle8i Supplied PL/SQL
Packages Reference

Not documented.

Oracle8i Supplied PL/SQL
Packages Reference

Oracle8i Supplied PL/SQL
Packages Reference

Oracle8i Supplied PL/SQL
Packages Reference

PL/SQL Program Units

Table 9-2 List of Oracle Supplied Packages

Package Name

Description

Documentation

DBMS_TTS

DBMS_UTILITY

DEBUG_EXTPROC

OUTLN_PKG

PLITBLM
(see Note Nr. 1 below)

SDO_ADMIN
(see Note Nr. 3 below)

SDO_GEOM
(see Note Nr. 3 below)

SDO_MIGRATE
(see Note Nr. 3 below)

SDO_TUNE
(see Note Nr. 3 below)

STANDARD
(see Note Nr. 1 below)

TimeSeries
(see Note Nr. 2 below)

TimeScale
(see Note Nr. 2 below)

TSTools
(see Note Nr. 2 below)

UTL_COLL

Checks if the transportable set is self-contained.

Provides various utility routines.

Lets you debug external procedures on platforms
with debuggers that can attach to a running
process.

Provides the interface for procedures and
functions associated with management of stored
outlines.

Handles index-table operations.

Provides functions implementing spatial index
creation and maintenance for spatial objects.

Provides functions implementing geometric
operations on spatial objects.

Provides functions for migrating spatial data
from release 7.3.3and 7.3.4 to 8.1.x.

Provides functions for selecting parameters that
determine the behavior of the spatial indexing
scheme used in the Spatial Cartridge.

Declares types, exceptions, and subprograms
which are available automatically to every
PL/SQL program.

Provides functions that perform operations, such
as extraction, retrieval, arithmetic, and
aggregation, on time series data.

Provides scaleup and scaledown functions.

Provides administrative tools procedures.

Enables PL/SQL programs to use collection
locators to query and update.

9-22 Application Developer's Guide - Fundamentals

Oracle8i Supplied PL/SQL
Packages Reference

Oracle8i Supplied PL/SQL
Packages Reference

Oracle8i Supplied PL/SQL
Packages Reference

Oracle8i Supplied PL/SQL
Packages Reference

Not documented.

Oracle Spatial User’s Guide
and Reference

Oracle Spatial User’s Guide
and Reference

Oracle Spatial User’s Guide
and Reference

Oracle Spatial User’s Guide
and Reference

Not documented.

Oracle8i Time Series User’s
Guide

Oracle8i Time Series User’s
Guide

Oracle8i Time Series User’s
Guide

Oracle8i Supplied PL/SQL
Packages Reference

PL/SQL Program Units

Table 9-2 List of Oracle Supplied Packages

Package Name Description Documentation
UTL FILE Enables your PL/SQL programs to read and Oracle8i Supplied PL/SQL
write operating system (OS) text files and Packages Reference

provides a restricted version of standard OS
stream file 1/0.

UTL_HTTP Enables HTTP callouts from PL/SQL and SQL to Oracle8i Supplied PL/SQL
access data on the Internet or to call Oracle Web Packages Reference
Server Cartridges.

UTL_INADDR Provides internet addressing. Oracle8i Supplied PL/SQL
Packages Reference

UTL PG Provides functions for converting COBOL Oracle Procedural Gateway
numeric data into Oracle numbers and Oracle for APPC User’s Guide
numbers into COBOL numeric data.

UTL RAW Provides SQL functions for RAWdatatypes that Oracle8i Supplied PL/SQL
concat, substr, etc. to and from RAWS. Packages Reference

UTL REF Enables a PL/SQL program to access an object by Oracle8i Supplied PL/SQL
providing a reference to the object. Packages Reference

UTL_SMTP Provides PL/SQL functionality to send emails. Oracle8i Supplied PL/SQL

Packages Reference

UTL_TCP Provides PL/SQL functionality to support simple Oracle8i Supplied PL/SQL

TCP/IP-based communications between servers Packages Reference
and the outside world.

Vir_Pkg Provides analytical and conversion functions for Oracle8i Visual
(see Note Nr. 2 below) Visual Information Retrieval. Information Retrieval
' User’s Guide and Reference

Note Nr. 1:

The DBMS_STANDARBTANDARD, and PLITBLM packages contain subprograms to help implement basic
language features. Oracle does not recommend that the subprograms be directly called. For this reason, these
supplied packages are not documented.

Note Nr. 2:

Time-Series, Image, Visual Information Retrieval, Audio, and Server-Managed Video Cartridge packages are
installed in user ORDSY Svithout public synonyms.

Note Nr. 3:
Spatial Cartridge packages are installed in user MDSY Swith public synonyms.

Using Procedures and Packages 9-23

PL/SQL Program Units

Bulk Binds

Oracle uses two engines to run PL/SQL blocks and subprograms: the PL/SQL
engine and the SQL engine. The PL/SQL engine runs procedural statements, while
the SQL engine runs SQL statements. During execution, every SQL statement
causes a context switch between the two engines, which results in a performance
penalty.

Performance can be improved substantially by minimizing the number of context
switches required to run a particular block or subprogram. When a SQL statement
runs inside a loop that uses collection elements as bind variables, the large number
of context switches required by the block can cause poor performance. Collections
include the following:

« Varrays

= Nested tables

« Index-by tables
« Hostarrays

Binding is the assignment of values to PL/SQL variables in SQL statements. Bulk
binding is binding an entire collection at once. Without bulk binds, the elements in a
collection are sent to the SQL engine individually, whereas bulk binds pass the
entire collection back and forth between the two engines.

Using bulk binds, you can improve performance by reducing the number of context
switches required to run SQL statements that use collection elements. Typically,
using bulk binds improves performance for SQL statements that affect four or more
database rows. The more rows affected by a SQL statement, the greater the
performance gain will be with bulk binds.

Note: This section provides an overview of bulk binds to help you
decide if you should use them in your PL/SQL applications. For
detailed information about using bulk binds, see the PL/SQL User’s
Guide and Reference.

9-24 Application Developer's Guide - Fundamentals

PL/SQL Program Units

Caution: You may heed to set up or drop data structures for
certain examples to work.

When to Use Bulk Binds The following sections discuss common scenarios where bulk
binds can improve performance. If you have, or plan to have, similar scenarios in
your applications, then you should consider using bulk binds.

DML Statements Referencing Collections ~ Bulk binds can be used to improve the
performance of DML statements that reference collections. To bulk-bind an input
collection before sending it to the SQL engine, use the FORALLkeyword. The SQL
statement must be an INSERT, UPDATE or DELETEstatement that references
collection elements.

For example, the following PL/SQL block increases the salary for employees whose
manager’s ID number is 7902, 7698, or 7839, without using bulk binds:

DECLARE
TYPE Numlist IS VARRAY (100) OF NUMBER;
Id NUMLIST := NUMLIST(7902, 7698, 7839);
BEGIN
FORIIN IdFIRST..Id.LAST LOOP
UPDATE Emp_tab SET Sal=1.1*Sal
WHERE Mgr = Id();
END LOOP;
END;

To run this block, PL/SQL sends a SQL statement to the SQL engine for each
employee that is updated. If there are many employees to update, then the large
number of context switches between the PL/SQL engine and the SQL engine can
hurt performance.

Use the FORALLkeyword to bulk-bind the collection and improve performance:

DECLARE
TYPE Numiist IS VARRAY (100) OF NUMBER;
Id NUMLIST := NUMLIST(7902, 7698, 7839);
BEGIN
FORALL i INIdFIRST.Id.LAST - bulk-bind the VARRAY
UPDATE Emp_tab SET Sal=1.1*Sal
WHERE Mgr = Id(;
END;

Using Procedures and Packages 9-25

PL/SQL Program Units

SELECT Statements Referencing Collections ~ Bulk binds can be used to improve the
performance of SELECTstatements that reference collections. To bulk-bind output
collections before returning them to the PL/SQL engine, use the keywords BULK
COLLECT INTO

For example, the following PL/SQL block returns the employee name and job for
employees whose manager’s ID number is 7698, without using bulk binds:

DECLARE
TYPE Var_tab IS TABLE OF VARCHAR2(20) INDEX BY BINARY_INTEGER,;
Empno VAR _TAB;
Ename VAR _TAB;
Counter NUMBER,;
CURSORCIS
SELECT Empno, Ename FROM Emp_tab WHERE Mgr =7698;
BEGIN

— Initialize variable tracing number of employees retumed.
counter =1,
— Find all employees whose manager’s ID number is 7698.

FORrecIN CLOOP
Empno(Counter) := rec.Empno;
Ename(Counter) := rec.Ename;
Counter := Counter + 1;

END LOOP;

END;

PL/SQL sends a SQL statement to the SQL engine for each employee that is
selected. If there are many employees selected, then the large number of context
switches between the PL/SQL engine and the SQL engine can hurt performance.

Use the BULK COLLECT INTOxeywords to bulk-bind the collection and improve
performance:

DECLARE
TYPE Empilist IS VARRAY(100) OF NUMBER,;
Empids EMPLIST := EMPLIST(7369, 7499, 7521, 7566, 7654, 7698);
TYPE Boniist IS TABLE OF Emp_tah.Sal%TYPE;
Bonlist_inst BONLIST;
BEGIN
Bonlist_inst:= BONLIST(1,2,34,5);
FORALL i IN Empids.FIRST..empIDs.LAST
UPDATE Emp_tab SET Bonus=0.1*Sal

9-26 Application Developer's Guide - Fundamentals

PL/SQL Program Units

WHERE empno = Empids(j)
RETURNING Sal BULK COLLECT INTO Bonlist_inst;
END;

FOR Loops that Reference Collections and the Returning Into Clause Bulk binds can be
used to improve the performance of FORIloops that reference collections and return
DML. If you have, or plan to have, PL/SQL code that does this, then you can use
the FORALLkeyword along with the BULK COLLECT INTGkeywords to improve
performance.

For example, the following PL/SQL block updates the Emp_tab table by
computing bonuses for a collection of employees; then it returns the bonuses in a
column called Bonlist . Both actions are performed without using bulk binds:

DECLARE
TYPE Empilist IS VARRAY(100) OF NUMBER,;
Empids EMPLIST := EMPLIST(7369, 7499, 7521, 7566, 7654, 7698);
TYPE Bonlist IS TABLE OF Emp_tab.sal%TYPE;
Bonlist_inst BONLIST;
BEGIN
Bonlist_inst := BONLIST(L2,34.5);
FORiIN Empids.FIRST..Empids.LAST LOOP
UPDATE Emp_tab SetBonus=0.1*sal
WHERE Empno = Empids(j)
RETURNING Sal INTO BONLIST(j);
END LOOP;
END;

PL/SQL sends a SQL statement to the SQL engine for each employee that is
updated. If there are many employees updated, then the large number of context
switches between the PL/SQL engine and the SQL engine can hurt performance.

Use the FORALLand BULK COLLECT INTQkeywords together to bulk-bind the
collection and improve performance:

DECLARE
TYPE Emplist IS VARRAY(100) OF NUMBER;
TYPE Numlist IS TABLE OF Emp_tab.Sal%TYPE;
Empids EMPLIST := EMPLIST(7369, 7499, 7521, 7566, 7654, 7698);
Bonlist NUMLIST;
BEGIN
FORALL i IN Empids.FIRST..empIDs.LAST
UPDATE Emp_tab SET Bonus=0.1*Sal
WHERE Empno = Empids())
RETURNING Sal BULK COLLECT INTO Boniist;

Using Procedures and Packages 9-27

Wrapping PL/SQL Code

END;

Triggers

A trigger is a special kind of PL/SQL anonymous block. You can define triggers to
fire before or after SQL statements, either on a statement level or for each row that is
affected. You can also define INSTEAD OFtriggers or system triggers (triggers on
DATABASEand SCHEMA

See Also: Chapter 12, "Using Triggers".

Wrapping PL/SQL Code

You can deliver your stored procedures in object code format using the PL/SQL
Wrapper. Wrapping your PL/SQL code hides your application internals. To run the
PL/SQL Wrapper, enter the WRARtatement at your system prompt using the
following syntax:

wrap INAME=input_fle [ONAME=ouput file]
See Also: For complete instructions on using the PL/SQL
Wrapper, see the PL/SQL User’s Guide and Reference.

Remote Dependencies

Timestamps

Dependencies among PL/SQL program units can be handled in two ways:
« Timestamps

« Signatures

If timestamps are used to handle dependencies among PL/SQL program units, then
whenever you alter a program unit or a relevant schema object, all of its dependent
units are marked as invalid and must be recompiled before they can be run.

Each program unit carries a timestamp that is set by the server when the unit is
created or recompiled. Figure 9-1 demonstrates this graphically. Procedures P1 and
P2 call stored procedure P3. Stored procedure P3 references table T1. In this
example, each of the procedures is dependent on table T1. P3 depends upon T1
directly, while P1 and P2 depend upon T1 indirectly.

9-28 Application Developer's Guide - Fundamentals

Remote Dependencies

Figure 9—-1 Dependency Relationships

@—e—e

If P3is altered, then P1 and P2 are marked as invalid immediately, if they are on
the same server as P3. The compiled states of P1 and P2 contain records of the
timestamp of P3. Therefore, if the procedure P3 is altered and recompiled, then the
timestamp on P3 no longer matches the value that was recorded for P3 during the
compilation of P1 and P2.

If P1 and P2 are on a client system, or on another Oracle Server in a distributed
environment, then the timestamp information is used to mark them as invalid at
runtime.

Disadvantages of the Timestamp Model

The disadvantage of this dependency model is that it is unnecessarily restrictive.
Recompilation of dependent objects across the network are often performed when
not strictly necessary, leading to performance degradation.

Furthermore, on the client side, the timestamp model can lead to situations that
block an application from running at all, if the client-side application is built using
PL/SQL version 2. Earlier releases of tools, such as Oracle Forms, that used
PL/SQL version 1 on the client side did not use this dependency model, because
PL/SQL version 1 had no support for stored procedures.

For releases of Oracle Forms that are integrated with PL/SQL version 2 on the client
side, the timestamp model can present problems. For example, during the
installation of the application, the application is rendered invalid unless the
client-side PL/SQL procedures that it uses are recompiled at the client site. Also, if a
client-side procedure depends on a server procedure, and if the server procedure is
changed or automatically recompiled, then the client-side PL/SQL procedure must
then be recompiled. Yet in many application environments (such as Forms runtime
applications), there is no PL/SQL compiler available on the client. This blocks the
application from running at all. The client application developer must then
redistribute new versions of the application to all customers.

Using Procedures and Packages 9-29

Remote Dependencies

Signatures

To alleviate some of the problems with the timestamp-only dependency model,
Oracle provides the additional capability of remote dependencies using signatures.
The signature capability affects only remote dependencies. Local (same server)
dependencies are not affected, as recompilation is always possible in this
environment.

A signature is associated with each compiled stored program unit. It identifies the
unit using the following criteria:

« The name of the unit (the package, procedure, or function name).
« The types of each of the parameters of the subprogram.

« The modes of the parameters (IN, OUTIN OUT).

« The number of parameters.

« The type of the return value for a function.

The user has control over whether signatures or timestamps govern remote
dependencies.

See Also: "Controlling Remote Dependencies” on page 9-35.

When the signature dependency model is used, a dependency on a remote program
unit causes an invalidation of the dependent unit if the dependent unit contains a
call to a subprogram in the parent unit, and if the signature of this subprogram has
been changed in an incompatible manner.

For example, consider a procedure Get_emp_name stored on a server in Boston
(BOSTON_SERVBRThe procedure is defined as the following:

Note: You may need to set up data structures, similar to the
following, for certain examples to work:

CONNECT system/manager
CREATE PUBLIC DATABASE LINK boston_server USING ‘instl_glias’;
CONNECT scottftiger

CREATE OR REPLACE PROCEDURE Get_emp_name (
emp_number IN NUMBER,
hire_date OUT VARCHAR?2,
emp_name OUT VARCHAR2) AS

BEGIN

9-30 Application Developer's Guide - Fundamentals

Remote Dependencies

SELECT ename, to_char(hiredate, ' DD-MON-YY’)
INTO emp_name, hire_date
FROMemp
WHERE empno =emp_number,
END;

When Get_emp_name is compiled on BOSTON_SERVERs signature, as well as its
timestamp, is recorded.

Now, assume that on another server in California, some PL/SQL code calls Get_
emp_nameidentifying it using a DBIlink called BOSTON_SERVER:s follows:

CREATE OR REPLACE PROCEDURE print_ename (emp_number IN NUMBER) AS
hire_date VARCHAR2(12);
ename VARCHAR2(10);

BEGIN
get_emp_name@BOSTON_SERVER(emp_number, hire_date, ename);
dbms_outputput_line(ename);
dbms_outputput_line(hire_date);

END;

When this California server code is compiled, the following actions take place:
« Aconnection is made to the Boston server.

« The signature of Get_emp_name is transferred to the California server.

« Thesignature is recorded in the compiled state of Print_ename

At runtime, during the remote procedure call from the California server to the
Boston server, the recorded signature of Get_emp_name that was saved in the
compiled state of Print_ename gets sent to the Boston server, regardless of
whether or not there were any changes.

If the timestamp dependency mode is in effect, then a mismatch in timestamps
causes an error status to be returned to the calling procedure.

However, if the signature mode is in effect, then any mismatch in timestamps is
ignored, and the recorded signature of Get_emp_name in the compiled state of
Print_ename on the California server is compared with the current signature of
Get_emp_name on the Boston server. If they match, then the call succeeds. If they
do not match, then an error status is returned to the Print_name procedure.

Note that the Get_emp_name procedure on the Boston server could have been
changed. Or, its timestamp could be different from that recorded in the Print_
name procedure on the California server, possibly due to the installation of a new
release of the server. As long as the signature remote dependency mode is in effect

Using Procedures and Packages 9-31

Remote Dependencies

on the California server, a timestamp mismatch does not cause an error when Get_

emp_nameis called.

Note: DETERMINISTIC, PARALLEL ENABLEand purity
information do not show in the signature mode. Optimizations
based on these settings are not automatically reconsidered if a
function on a remote system is redefined with different settings.
This may lead to incorrect query results when calls to the remote
function occur, even indirectly, in a SQL statement, or if the remote
function is used, even indirectly, in a function-based index.

When Does a Signature Change?

Datatypes A signature changes when you switch from one class of datatype to
another. Within each datatype class, there can be several types. Changing a
parameter datatype from one type to another within a class does not cause the

signature to change.

Table 9-3 lists the classes of types.

Table 9-3 Datatypes

Varchar Types
VARCHAR?2
VARCHAR
STRING
LONG

ROWID
Character Types
CHARACTER
CHAR

Raw Types
RAW

LONG RAW
Integer Types

9-32 Application Developer's Guide - Fundamentals

Number Types
NUMBER
INTEGER

INT
SMALLINT
DECIMAL

DEC
REAL
FLOAT

NUMERIC
DOUBLE PRECISION
NUMERIC

Date Type

Remote Dependencies

Table 9-3 Datatypes

BINARY_INTEGER DATE
PLS_INTEGER

BOOLEAN

NATURAL

POSITIVE

POSITIVEN

NATURALN

Modes Changing to or from an explicit specification of the default parameter mode
IN does not change the signature of a subprogram. For example, you change

PROCEDURE P1 (Param1 NUMBER);

to
PROCEDURE P1 (Paraml1 IN NUMBER);

This does not change the signature. Any other change of parameter mode does
change the signature.

Default Parameter Values Changing the specification of a default parameter value does
not change the signature. For example, procedure P1 has the same signature in the
following two examples:

PROCEDURE P1 (Param1 IN NUMBER :=100);
PROCEDURE P1 (Param1 IN NUMBER := 200);

An application developer who requires that callers get the new default value must
recompile the called procedure, but no signature-based invalidation occurs when a
default parameter value assignment is changed.

Examples of Signatures

Using the Get_emp_names procedure defined in "Parameters for Procedures and
Functions" on page 9-5, if the procedure body is changed to the following:

DECLARE
Emp_number NUMBER,;
Hire_date DATE;
BEGIN

Using Procedures and Packages 9-33

Remote Dependencies

— date format model changes

SELECT Ename, To_char(Hiredate,' DD/MON/YYYY’)
INTO Emp_name, Hire_date
FROM Emp_tab
WHERE Empno =Emp_number,
END;

Then, the specification of the procedure has not changed, and, therefore, its
signature has not changed.

But, if the procedure specification is changed to the following:

CREATE OR REPLACE PROCEDURE Get_emp_name (
Emp_number IN NUMBER,
Hire_date OUT DATE,
Emp_name OUT VARCHAR2) AS

And, if the body is changed accordingly, then the signature changes, because the
parameter Hire_date has a different datatype.

However, if the name of that parameter changes to When_hired , and the datatype
remains VARCHARZand the mode remains OUT then the signature does not change.
Changing the name of a formal parameter does not change the signature of the unit.

Consider the following example:

CREATE OR REPLACE PACKAGE Emp_package AS
TYPE Emp_data_type IS RECORD (
Emp_number NUMBER,
Hire_date VARCHAR2(12),
Emp_name VARCHAR2(10));
PROCEDURE Get_emp_data
(Emp_data IN OUT Emp_data._type);
END;

CREATE OR REPLACE PACKAGE BODY Emp_package AS
PROCEDURE Get_emp_data
(Emp_data IN OUT Emp_data._type) IS
BEGIN
SELECT Empno, Ename, TO_CHAR(Hiredate,' DD/MON/YY’)
INTO Emp_data
FROM Emp_tab
WHERE Empno = Emp_data.Emp_number,
END;
END;

9-34 Application Developer's Guide - Fundamentals

Remote Dependencies

If the package specification is changed so that the record’s field names are changed,
but the types remain the same, then this does not affect the signature. For example,
the following package specification has the same signature as the previous package
specification example;

CREATE OR REPLACE PACKAGE Emp_package AS
TYPE Emp_data_type IS RECORD (
Emp num NUMBER, -—wasEmp _number
Hire_dat VARCHAR2(12), —was Hire_date
Empname VARCHAR2(10)); —was Emp_name
PROCEDURE Get_emp_data
(Emp_data IN OUT Emp_data._type);
END;

Changing the name of the type of a parameter does not cause a change in the
signature if the type remains the same as before. For example, the following
package specification for Emp_package is the same as the first one:

CREATE OR REPLACE PACKAGE Emp_package AS
TYPEEmp data record _typeISRECORD (
Emp_number NUMBER,
Hire_date VARCHAR2(12),
Emp_name VARCHAR2(10));
PROCEDURE Get_emp_data
(Emp_data IN OUT Emp_data._ record_ type);
END;

Controlling Remote Dependencies

The dynamic initialization parameter REMOTE_DEPENDENCIES_MAQioBtrols
whether the timestamp or the signature dependency model is in effect.

« Iftheinitialization parameter file contains the following specification:
REMOTE_DEPENDENCIES MODE = TIMESTAMP
Then only timestamps are used to resolve dependencies (if this is not explicitly
overridden dynamically).

« If the initialization parameter file contains the following parameter
specification:

REMOTE_DEPENDENCIES_MODE = SIGNATURE

Then signatures are used to resolve dependencies (if this not explicitly
overridden dynamically).

Using Procedures and Packages 9-35

Remote Dependencies

You can alter the mode dynamically by using the DDL statements. For example:
ALTER SESSION SET REMOTE_DEPENDENCIES_MODE =
{SIGNATURE | TIMESTAMP}
The above example alters the dependency model for the current session.
ALTER SYSTEM SET REMOTE_DEPENDENCIES MODE =
{SIGNATURE | TIMESTAMP}

The above example alters the dependency model on a system-wide basis after
startup.

If the REMOTE_DEPENDENCIES_MQ#iEameter is not specified, either in the

init

.ora parameter file or using the ALTER SESSIONor ALTER SYSTENDDL

statements, then timestamp is the default value. Therefore, unless you explicitly use
the REMOTE_DEPENDENCIES MQg2Eameter, or the appropriate DDL statement,
your server is operating using the timestamp dependency model.

When you use REMOTE_DEPENDENCIES MGBSESNATUREYyou should be aware
of the following:

If you change the default value of a parameter of a remote procedure, then the
local procedure calling the remote procedure is not invalidated. If the call to the
remote procedure does not supply the parameter, then the default value is used.
In this case, because invalidation/recompilation does not automatically occur,
the old default value is used. If you want to see the new default values, then
you must recompile the calling procedure manually.

If you add a new overloaded procedure in a package (a new procedure with the
same name as an existing one), then local procedures that call the remote
procedure are not invalidated. If it turns out that this overloading results in a
rebinding of existing calls from the local procedure under the timestamp mode,
then this rebinding does not happen under the signature mode, because the
local procedure does not get invalidated. You must recompile the local
procedure manually to achieve the new rebinding.

If the types of parameters of an existing packaged procedure are changed so
that the new types have the same shape as the old ones, then the local calling
procedure is not invalidated or recompiled automatically. You must recompile
the calling procedure manually to get the semantics of the new type.

Dependency Resolution

When REMOTE_DEPENDENCIES_MCBHEMESTAMRthe default value),
dependencies among program units are handled by comparing timestamps at

9-36 Application Developer's Guide - Fundamentals

Remote Dependencies

runtime. If the timestamp of a called remote procedure does not match the
timestamp of the called procedure, then the calling (dependent) unit is invalidated
and must be recompiled. In this case, if there is no local PL/SQL compiler, then the
calling application cannot proceed.

In the timestamp dependency mode, signatures are not compared. If there is a local
PL/SQL compiler, then recompilation happens automatically when the calling
procedure is run.

When REMOTE_DEPENDENCIES MOB&GNATUREthe recorded timestamp in
the calling unit is first compared to the current timestamp in the called remote unit.
If they match, then the call proceeds. If the timestamps do not match, then the
signature of the called remote subprogram, as recorded in the calling subprogram,
is compared with the current signature of the called subprogram. If they do not
match (using the criteria described in the section "When Does a Signature Change?"
on page 9-32), then an error is returned to the calling session.

Suggestions for Managing Dependencies
Oracle recommends that you follow these guidelines for setting the REMOTE_
DEPENDENCIES_MOQOdarameter:

« Server-side PL/SQL users can set the parameter to TIMESTAMP(or let it default
to that) to get the timestamp dependency mode.

« Server-side PL/SQL users can choose to use the signature dependency mode if
they have a distributed system and they want to avoid possible unnecessary
recompilations.

« Client-side PL/SQL users should set the parameter to SIGNATUREThis allows:

— Installation of new applications at client sites, without the need to
recompile procedures.

— Ability to upgrade the server, without encountering timestamp mismatches.

« When using signhature mode on the server side, add new procedures to the end
of the procedure (or function) declarations in a package specification. Adding a
new procedure in the middle of the list of declarations can cause unnecessary
invalidation and recompilation of dependent procedures.

Using Procedures and Packages 9-37

Cursor Variables

Cursor Variables

A cursor is a static object; a cursor variable is a pointer to a cursor. Because cursor
variables are pointers, they can be passed and returned as parameters to procedures
and functions. A cursor variable can also refer to different cursors in its lifetime.

Some additional advantages of cursor variables include:

Encapsulation Queries are centralized in the stored procedure that opens the
cursor variable.

Ease of maintenance If you need to change the cursor, then you only need to
make the change in one place: the stored procedure. There is no need to change
each application.

Convenient security The user of the application is the username used when the
application connects to the server. The user must have EXECUTEpermission on
the stored procedure that opens the cursor. But, the user does not need to have
READpermission on the tables used in the query. This capability can be used to
limit access to the columns in the table, as well as access to other stored
procedures.

See Also: The PL/SQL User’s Guide and Reference has a complete
discussion of cursor variables.

Declaring and Opening Cursor Variables

Memory is usually allocated for a cursor variable in the client application using the
appropriate ALLOCATEstatement. In Pro*C, use the EXEC SQL ALLOCATE
<cursor_name> statement. In OCI, use the Cursor Data Area.

You can also use cursor variables in applications that run entirely in a single server
session. You can declare cursor variables in PL/SQL subprograms, open them, and
use them as parameters for other PL/SQL subprograms.

Examples of Cursor Variables

This section includes several examples of cursor variable usage in PL/SQL. For
additional cursor variable examples that use the programmatic interfaces, see the
following manuals:

9-38 Application Developer's Guide - Fundamentals

Cursor Variables

« Pro*C/C++ Precompiler Programmer’s Guide
« Pro*COBOL Precompiler Programmer’s Guide
« Oracle Call Interface Programmer’s Guide

« SQL*Module for Ada Programmer’s Guide

Fetching Data

The following package defines a PL/SQL cursor variable type Emp_val_cv_type ,
and two procedures. The first procedure, Open_emp_cv, opens the cursor variable
using a bind variable in the WHERI[Elause. The second procedure, Fetch_emp_
data , fetches rows from the Emp_tab table using the cursor variable.

CREATE OR REPLACE PACKAGE Emp_data AS
TYPE Emp_val cv_type IS REF CURSOR RETURN Emp_tab%ROWTYPE;
PROCEDURE Open_emp_cv (Emp_cv INOUT Emp_val_cv_type,
Dept number IN INTEGER);
PROCEDURE Fetch_emp _data(emp cv IN Emp_val_cv_type,
emp_row OUT Emp_tab%ROWTYPE);
END Emp_data;

CREATE OR REPLACE PACKAGE BODY Emp_data AS
PROCEDURE Open_emp _cv(Emp_cv INOUT Emp_val cv_type,
Dept_numberIN INTEGER) IS
BEGIN
OPEN emp_cv FOR SELECT * FROM Emp_tab WHERE deptno =dept_number;
END open_emp _cv,
PROCEDURE Fetch_emp_data (Emp_cv IN Emp_val cv_type,
Emp_row OUT Emp_tab%ROWTYPE) IS
BEGIN
FETCH Emp_cvINTO Emp_row;
END Fetch_emp_data;
END Emp_data;

The following example shows how to call the Emp_data package procedures from
a PL/SQL block:

Using Procedures and Packages 9-39

Cursor Variables

DECLARE

— declare a cursor variable
Emp_curs Emp_data.Emp_val cv_type;
Dept_number Dept_tab.Deptno%TYPE;
Emp_row Emp_tab%ROWTYPE;

BEGIN
Dept_number :=20;
— open the cursor using a variable
Emp_data.Open_emp_cv(Emp_curs, Dept_number);
—fetch the data and display it
LOOP
Emp_data.Fetch_emp_data(Emp_curs, Emp_row);
EXIT WHEN Emp_curs%NOTFOUND;
DBMS_OUTPUT.PUT(Emp_row.Ename||’);
DBMS_OUTPUT.PUT_LINE(EmMp_row.Sal);
END LOOP;
END;

Implementing Variant Records

The power of cursor variables comes from their ability to point to different cursors.
In the following package example, a discriminant is used to open a cursor variable
to point to one of two different cursors:

CREATE OR REPLACE PACKAGE Emp_dept_data AS
TYPE Cv_type IS REF CURSOR;
PROCEDURE Open cv(Cv INOUT cv._type,
Discim IN - POSITIVE);
END Emp_dept_data;

CREATE OR REPLACE PACKAGE BODY Emp_dept_data AS
PROCEDURE Open _cv(Cv INOUT cv_type,
DiscimIN POSITIVE) IS
BEGIN
IF Discrim =1 THEN
OPEN Cv FOR SELECT * FROM Emp_tabh WHERE Sal > 2000;
ELSIF Discrim =2 THEN
OPEN Cv FOR S